These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 16383083)

  • 1. Controlled exertion of force by developmentally delayed young men and women.
    Nagasawa Y; Demura S
    Percept Mot Skills; 2005 Oct; 101(2):487-97. PubMed ID: 16383083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ability to coordinate exertion of force by the dominant hand: comparisons among university students and 65- to 78-year-old men and women.
    Nagasawa Y; Demura S; Yamaji S; Kobayashi H; Matsuzawa J
    Percept Mot Skills; 2000 Jun; 90(3 Pt 1):995-1007. PubMed ID: 10883791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superiority of the dominant and nondominant hands in static strength and controlled force exertion.
    Noguchi T; Demura S; Aoki H
    Percept Mot Skills; 2009 Oct; 109(2):339-46. PubMed ID: 20037986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Provisional norms by age group for Japanese females on the controlled force-exertion test using a bar-chart display.
    Nagasawa Y; Demura S
    Percept Mot Skills; 2008 Jun; 106(3):785-94. PubMed ID: 18712200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Provisional norms by age group for Japanese women on the controlled force exertion test using a quasi-random display.
    Nagasawa Y; Demura S
    Percept Mot Skills; 2010 Apr; 110(2):613-24. PubMed ID: 20499570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age differences between the controlled force exertion measured by a computer-generated sinusoidal and a bar chart display.
    Nagasawa Y; Demura S; Takahashi K
    Arch Gerontol Geriatr; 2013; 57(1):86-91. PubMed ID: 23571130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concurrent validity of tests to measure the coordinated exertion of force by computerized target pursuit.
    Nagasawa Y; Demura S; Kitabayashi T
    Percept Mot Skills; 2004 Apr; 98(2):551-60. PubMed ID: 15141920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationships among coordinated exertion of force and performance on pegboard and pursuit rotor tests using upper limbs and fingers.
    Nagasawa Y; Demura S
    Percept Mot Skills; 2004 Dec; 99(3 Pt 1):1053-60. PubMed ID: 15648508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an apparatus to estimate coordinated exertion of force.
    Nagasawa Y; Demura S
    Percept Mot Skills; 2002 Jun; 94(3 Pt 1):899-913. PubMed ID: 12081296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laterality and age-level differences between young women and elderly women in controlled force exertion (CFE).
    Kubota H; Demura S; Kawabata H
    Arch Gerontol Geriatr; 2012; 54(2):e68-72. PubMed ID: 21930309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliability of a computerized target-pursuit system for measuring coordinated exertion of force.
    Nagasawa Y; Demura S; Nakada M
    Percept Mot Skills; 2003 Jun; 96(3 Pt 2):1071-85. PubMed ID: 12929759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force developmental phase and reliability in explosive and voluntary grip exertions.
    Demura S; Yamaji S; Nagasawa Y; Ikemoto Y; Shimada S
    Percept Mot Skills; 2001 Jun; 92(3 Pt 2):1009-21. PubMed ID: 11565909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age and sex differences of controlled force exertion measured by a computer-generated sinusoidal target-pursuit system.
    Nagasawa Y; Demura S
    J Physiol Anthropol; 2009 Jun; 28(4):199-205. PubMed ID: 19652452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reproducibility of controlled force exertion measurements computed by a quasi-random target-pursuit system.
    Nagasawa Y; Demura S
    Percept Mot Skills; 2010 Apr; 110(2):366-78. PubMed ID: 20499549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using the force-time curve to detect maximal grip strength effort.
    Shechtman O; Sindhu BS; Davenport PW
    J Hand Ther; 2007; 20(1):37-47; quiz 48. PubMed ID: 17254907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sex differences and properties of the decreasing force during sustained static grip at various target forces.
    Yamaji S; Demura S; Nakada M
    Percept Mot Skills; 2006 Aug; 103(1):29-39. PubMed ID: 17037641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using the force-time curve to determine sincerity of effort in people with upper extremity injuries.
    Sindhu BS; Shechtman O
    J Hand Ther; 2011; 24(1):22-9; quiz 30. PubMed ID: 21050713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gender differences in perceived exertion during fatiguing knee extensions.
    Pincivero DM; Coelho AJ; Campy RM
    Med Sci Sports Exerc; 2004 Jan; 36(1):109-17. PubMed ID: 14707776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determining the accuracy of the psychophysical approach to grip force measurement.
    King PM; Finet M
    J Hand Ther; 2004; 17(4):412-6. PubMed ID: 15538682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfering effects of the task demands of grip force and mental processing on isometric shoulder strength and muscle activity.
    MacDonell CW; Keir PJ
    Ergonomics; 2005 Dec; 48(15):1749-69. PubMed ID: 16373315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.