These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 16383392)

  • 1. Chemosensitive running droplet.
    Sumino Y; Kitahata H; Yoshikawa K; Nagayama M; Nomura SM; Magome N; Mori Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041603. PubMed ID: 16383392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-motion of an oil droplet: a simple physicochemical model of active Brownian motion.
    Sumino Y; Yoshikawa K
    Chaos; 2008 Jun; 18(2):026106. PubMed ID: 18601508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of a product on spontaneous droplet motion driven by a chemical reaction of surfactant.
    Tanabe T; Ogasawara T; Suematsu NJ
    Phys Rev E; 2020 Aug; 102(2-1):023102. PubMed ID: 32942422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regular self-motion of a liquid droplet powered by the chemical marangoni effect.
    Nagai K; Sumino Y; Yoshikawa K
    Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):197-200. PubMed ID: 17169535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-running droplet: emergence of regular motion from nonequilibrium noise.
    Sumino Y; Magome N; Hamada T; Yoshikawa K
    Phys Rev Lett; 2005 Feb; 94(6):068301. PubMed ID: 15783779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-propelled motion of a droplet induced by Marangoni-driven spreading.
    Chen YJ; Nagamine Y; Yoshikawa K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016303. PubMed ID: 19658802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial Dynamics in the Spontaneous Motion of an Aqueous Droplet.
    Suematsu NJ; Saikusa K; Nagata T; Izumi S
    Langmuir; 2019 Sep; 35(35):11601-11607. PubMed ID: 31397577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrokinetic motion of a micro oil droplet under a glass slide.
    Zhang J; Song Y; Li D
    Electrophoresis; 2019 Apr; 40(7):1034-1040. PubMed ID: 30578636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of droplet motion under electrowetting actuation.
    Annapragada SR; Dash S; Garimella SV; Murthy JY
    Langmuir; 2011 Jul; 27(13):8198-204. PubMed ID: 21627144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High internal phase emulsions under shear. Co-surfactancy and shear stability.
    Yaron PN; Scott AJ; Reynolds PA; Mata JP; White JW
    J Phys Chem B; 2011 May; 115(19):5775-84. PubMed ID: 21500797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Numerical Study of Micro-Droplet Spreading Behaviors on Wettability-Confined Tracks Using a Three-Dimensional Phase-Field Lattice Boltzmann Model.
    Xu D; Ba Y; Sun J; Fu X
    Langmuir; 2020 Jan; 36(1):340-353. PubMed ID: 31851519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous deformation of an oil droplet induced by the cooperative transport of cationic and anionic surfactants through the interface.
    Sumino Y; Kitahata H; Seto H; Nakata S; Yoshikawa K
    J Phys Chem B; 2009 Dec; 113(48):15709-14. PubMed ID: 19902924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Communication: Mode bifurcation of droplet motion under stationary laser irradiation.
    Takabatake F; Yoshikawa K; Ichikawa M
    J Chem Phys; 2014 Aug; 141(5):051103. PubMed ID: 25106560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micrometer-sized water droplet impingement dynamics and evaporation on a flat dry surface.
    Briones AM; Ervin JS; Putnam SA; Byrd LW; Gschwender L
    Langmuir; 2010 Aug; 26(16):13272-86. PubMed ID: 20695569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forward and backward laser-guided motion of an oil droplet.
    Rybalko S; Magome N; Yoshikawa K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046301. PubMed ID: 15600513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhythmic motion of a droplet under a dc electric field.
    Hase M; Watanabe SN; Yoshikawa K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046301. PubMed ID: 17155167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation on Transient Oscillation of Droplet Deformation before Conical Breakup under Alternating Current Electric Field.
    Yan H; He L; Luo X; Wang J; Huang X; Lü Y; Yang D
    Langmuir; 2015 Aug; 31(30):8275-83. PubMed ID: 26138311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels.
    Wu C; Xu X; Qian T
    J Phys Condens Matter; 2013 May; 25(19):195103. PubMed ID: 23552493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous mode-selection in the self-propelled motion of a solid/liquid composite driven by interfacial instability.
    Takabatake F; Magome N; Ichikawa M; Yoshikawa K
    J Chem Phys; 2011 Mar; 134(11):114704. PubMed ID: 21428653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.