These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16383445)

  • 21. Optofluidic restricted imaging, spectroscopy and counting of nanoparticles by evanescent wave using immiscible liquids.
    Liang L; Zuo YF; Wu W; Zhu XQ; Yang Y
    Lab Chip; 2016 Aug; 16(16):3007-14. PubMed ID: 26984126
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brownian motion of boomerang colloidal particles.
    Chakrabarty A; Konya A; Wang F; Selinger JV; Sun K; Wei QH
    Phys Rev Lett; 2013 Oct; 111(16):160603. PubMed ID: 24182246
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adsorption and diffusion of colloidal Au nanoparticles at a liquid-vapor interface.
    Poddar NN; Amar JG
    J Chem Phys; 2014 Jun; 140(24):244702. PubMed ID: 24985663
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental study of the effect of external electric fields on interfacial dynamics of colloidal particles.
    Kazoe Y; Yoda M
    Langmuir; 2011 Sep; 27(18):11481-8. PubMed ID: 21744873
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct observation Brownian motion of individual nanoparticles in water using microsphere-assisted microscopy.
    Yang S; Ye YH; Zang J; Pei Y; Xia Y; Zhang J
    Opt Lett; 2021 Jul; 46(13):3099-3102. PubMed ID: 34197390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-diffusion in submonolayer colloidal fluids near a wall.
    Anekal SG; Bevan MA
    J Chem Phys; 2006 Jul; 125(3):34906. PubMed ID: 16863384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct measurements of protein-stabilized gold nanoparticle interactions.
    Eichmann SL; Bevan MA
    Langmuir; 2010 Sep; 26(18):14409-13. PubMed ID: 20735041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sizing of metallic nanoparticles confined to a microfluidic film applying dark-field particle tracking.
    Haiden C; Wopelka T; Jech M; Keplinger F; Vellekoop MJ
    Langmuir; 2014 Aug; 30(31):9607-15. PubMed ID: 25036522
    [TBL] [Abstract][Full Text] [Related]  

  • 29. One-dimensional assemblies of charged nanoparticles in water: A simulation study.
    Richardi J
    J Chem Phys; 2009 Jan; 130(4):044701. PubMed ID: 19191398
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of hydrodynamic separation of biological objects in microchannel devices.
    Lin YC; Jen CP
    Lab Chip; 2002 Aug; 2(3):164-9. PubMed ID: 15100828
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrostatically confined nanoparticle interactions and dynamics.
    Eichmann SL; Anekal SG; Bevan MA
    Langmuir; 2008 Feb; 24(3):714-21. PubMed ID: 18177058
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aggregation of Charged Particles under Electrophoresis or Gravity at Arbitrary Péclet Numbers.
    Wilson HJ; Pietraszewski LA; Davis RH
    J Colloid Interface Sci; 2000 Jan; 221(1):87-103. PubMed ID: 10623455
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Colloidal dynamics near a wall studied by evanescent wave light scattering: experimental and theoretical improvements and methodological limitations.
    Holmqvist P; Dhont JK; Lang PR
    J Chem Phys; 2007 Jan; 126(4):044707. PubMed ID: 17286499
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ray optics calculation of the radiation forces exerted on a dielectric sphere in an evanescent field.
    Walz JY
    Appl Opt; 1999 Sep; 38(25):5319-30. PubMed ID: 18324034
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrodynamic measurement of Brownian particles at a liquid-solid interface by low-coherence dynamic light scattering.
    Ishii K; Iwai T; Xia H
    Opt Express; 2010 Mar; 18(7):7390-6. PubMed ID: 20389761
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved description of soft layered materials with van der Waals density functional theory.
    Graziano G; Klimeš J; Fernandez-Alonso F; Michaelides A
    J Phys Condens Matter; 2012 Oct; 24(42):424216. PubMed ID: 23032994
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Attractive and repulsive electrostatic forces between positively charged latex particles in the presence of anionic linear polyelectrolytes.
    Popa I; Gillies G; Papastavrou G; Borkovec M
    J Phys Chem B; 2010 Mar; 114(9):3170-7. PubMed ID: 20148528
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evanescent wave optical binding forces on spherical microparticles.
    Han X; Jones PH
    Opt Lett; 2015 Sep; 40(17):4042-5. PubMed ID: 26368707
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Correlation Equation for Predicting the Single-Collector Contact Efficiency of Colloids in a Horizontal Flow.
    Li J; Xie X; Ghoshal S
    Langmuir; 2015 Jul; 31(26):7210-9. PubMed ID: 26057080
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational study of the self-organization of bidisperse nanoparticles.
    Rabideau BD; Bonnecaze RT
    Langmuir; 2004 Oct; 20(21):9408-14. PubMed ID: 15461537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.