These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16383468)

  • 1. Inverse melting and inverse freezing: a spin model.
    Schupper N; Shnerb NM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046107. PubMed ID: 16383468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin model for inverse melting and inverse glass transition.
    Schupper N; Shnerb NM
    Phys Rev Lett; 2004 Jul; 93(3):037202. PubMed ID: 15323860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inverse melting and inverse freezing in a three-state spin-glass model with finite connectivity.
    Erichsen R; Theumann WK; Magalhaes SG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012139. PubMed ID: 23410315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable solution of the simplest spin model for inverse freezing.
    Crisanti A; Leuzzi L
    Phys Rev Lett; 2005 Aug; 95(8):087201. PubMed ID: 16196894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase transitions in the three-state Ising spin-glass model with finite connectivity.
    Erichsen R; Theumann WK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061126. PubMed ID: 21797321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic first order transition and inverse freezing in a 3D spin glass.
    Paoluzzi M; Leuzzi L; Crisanti A
    Phys Rev Lett; 2010 Mar; 104(12):120602. PubMed ID: 20366522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverse freezing in a cluster Ising spin-glass model with antiferromagnetic interactions.
    Silva CF; Zimmer FM; Magalhaes SG; Lacroix C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051104. PubMed ID: 23214735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multicritical points and topology-induced inverse transition in the random-field Blume-Capel model in a random network.
    Erichsen R; Lopes AA; Magalhaes SG
    Phys Rev E; 2017 Jun; 95(6-1):062113. PubMed ID: 28709271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lattice cluster theory of associating polymers. II. Enthalpy and entropy of self-assembly and Flory-Huggins interaction parameter χ for solutions of telechelic molecules.
    Dudowicz J; Freed KF; Douglas JF
    J Chem Phys; 2012 Feb; 136(6):064903. PubMed ID: 22360220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entropy crisis, ideal glass transition, and polymer melting: exact solution on a Husimi cactus.
    Corsi A; Gujrati PD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 1):031502. PubMed ID: 14524772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of drug-polymer thermodynamic phase diagrams using Flory-Huggins interaction theory: identifying the relevance of temperature and drug weight fraction to phase separation within solid dispersions.
    Tian Y; Booth J; Meehan E; Jones DS; Li S; Andrews GP
    Mol Pharm; 2013 Jan; 10(1):236-48. PubMed ID: 23110477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Freezing-in and production of entropy in vitrification.
    Möller J; Gutzow I; Schmelzer JW
    J Chem Phys; 2006 Sep; 125(9):094505. PubMed ID: 16965095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse freezing in the Ghatak-Sherrington model with a random field.
    Morais CV; Lazo MJ; Zimmer FM; Magalhaes SG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031133. PubMed ID: 22587064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Random isotropic structures and possible glass transitions in diblock copolymer melts.
    Zhang CZ; Wang ZG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031804. PubMed ID: 16605551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the formation and stability of amorphous small molecule binary mixtures from computationally determined Flory-Huggins interaction parameter and phase diagram.
    Pajula K; Taskinen M; Lehto VP; Ketolainen J; Korhonen O
    Mol Pharm; 2010 Jun; 7(3):795-804. PubMed ID: 20361760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Communication: The simplified generalized entropy theory of glass-formation in polymer melts.
    Freed KF
    J Chem Phys; 2015 Aug; 143(5):051102. PubMed ID: 26254633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformal field theory of the Flory model of polymer melting.
    Jacobsen JL; Kondev J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066108. PubMed ID: 15244668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inverse transitions in a spin-glass model on a scale-free network.
    Kim DH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022803. PubMed ID: 25353530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of acetaminophen's solubility in poly(ethylene oxide) at room temperature using the Flory-Huggins theory.
    Yang M; Wang P; Gogos C
    Drug Dev Ind Pharm; 2013 Jan; 39(1):102-8. PubMed ID: 22356356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exactly solvable antiferromagnetic Blume-Capel model on a sawtooth chain.
    Guo YP; Liu ZQ; Xu YL; Kong XM
    Phys Rev E; 2016 May; 93(5):052151. PubMed ID: 27300873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.