These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 16383502)
1. Analytic calculation of energy transfer and heat flux in a one-dimensional system. Balakrishnan V; Van den Broeck C Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046141. PubMed ID: 16383502 [TBL] [Abstract][Full Text] [Related]
2. Heat conduction and entropy production in a one-dimensional hard-particle gas. Grassberger P; Nadler W; Yang L Phys Rev Lett; 2002 Oct; 89(18):180601. PubMed ID: 12398587 [TBL] [Abstract][Full Text] [Related]
3. Thermostatistics of small nonlinear systems: Gaussian thermal bath. Morgado WA; Duarte Queirós SM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022110. PubMed ID: 25215692 [TBL] [Abstract][Full Text] [Related]
4. Nonlinear response in the driven lattice Lorentz gas. Leitmann S; Franosch T Phys Rev Lett; 2013 Nov; 111(19):190603. PubMed ID: 24266466 [TBL] [Abstract][Full Text] [Related]
5. Local entropy in quasi-one-dimensional heat transport. Kim CS; Morriss GP Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061137. PubMed ID: 20365148 [TBL] [Abstract][Full Text] [Related]
6. Heat conduction and energy diffusion in momentum-conserving one-dimensional full-lattice ding-a-ling model. Gao Z; Li N; Li B Phys Rev E; 2016 Feb; 93(2):022102. PubMed ID: 26986283 [TBL] [Abstract][Full Text] [Related]
7. Heat conduction in a chain of dissociating particles: Effect of dimensionality. Zolotarevskiy V; Savin AV; Gendelman OV Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032127. PubMed ID: 25871074 [TBL] [Abstract][Full Text] [Related]
8. Heat conduction in a one-dimensional gas of elastically colliding particles of unequal masses. Dhar A Phys Rev Lett; 2001 Apr; 86(16):3554-7. PubMed ID: 11328021 [TBL] [Abstract][Full Text] [Related]
9. Generalized hydrodynamics and microflows. Al-Ghoul M; Chan Eu B Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016301. PubMed ID: 15324163 [TBL] [Abstract][Full Text] [Related]
10. Local heat flux and energy loss in a two-dimensional vibrated granular gas. Herbst O; Müller P; Zippelius A Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041303. PubMed ID: 16383369 [TBL] [Abstract][Full Text] [Related]
11. Heat conduction in disordered harmonic lattices with energy-conserving noise. Dhar A; Venkateshan K; Lebowitz JL Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 1):021108. PubMed ID: 21405819 [TBL] [Abstract][Full Text] [Related]
12. Particle model for nonlocal heat transport in fusion plasmas. Bufferand H; Ciraolo G; Ghendrih P; Lepri S; Livi R Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023102. PubMed ID: 23496626 [TBL] [Abstract][Full Text] [Related]
13. Heat generation and transport due to time-dependent forces. Agarwalla BK; Wang JS; Li B Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041115. PubMed ID: 22181095 [TBL] [Abstract][Full Text] [Related]
14. Stationary nonequilibrium properties for a heat conduction model. Bernardin C Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021134. PubMed ID: 18850813 [TBL] [Abstract][Full Text] [Related]
15. General expression for entropy production in transport processes based on the thermomass model. Dong Y; Cao BY; Guo ZY Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061107. PubMed ID: 23005051 [TBL] [Abstract][Full Text] [Related]
16. Tagged particle correlations in the asymmetric simple exclusion process: finite-size effects. Gupta S; Majumdar SN; Godrèche C; Barma M Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021112. PubMed ID: 17930011 [TBL] [Abstract][Full Text] [Related]
17. Metal speciation dynamics in dispersions of soft colloidal ligand particles under steady-state laminar flow condition. Duval JF; Qian S J Phys Chem A; 2009 Nov; 113(46):12791-804. PubMed ID: 19810749 [TBL] [Abstract][Full Text] [Related]
18. Exact solution of a Lévy walk model for anomalous heat transport. Dhar A; Saito K; Derrida B Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):010103. PubMed ID: 23410270 [TBL] [Abstract][Full Text] [Related]
19. Classical heat transport in anharmonic molecular junctions: exact solutions. Liu S; Agarwalla BK; Wang JS; Li B Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022122. PubMed ID: 23496475 [TBL] [Abstract][Full Text] [Related]
20. Heat conduction in one-dimensional systems with hard-point interparticle interactions. Savin AV; Tsironis GP; Zolotaryuk AV Phys Rev Lett; 2002 Apr; 88(15):154301. PubMed ID: 11955198 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]