These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 16383581)

  • 1. Potential flow inside an evaporating cylindrical line.
    Petsi AJ; Burganos VN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):047301. PubMed ID: 16383581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaporation-induced flow in an inviscid liquid line at any contact angle.
    Petsi AJ; Burganos VN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041201. PubMed ID: 16711786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stokes flow inside an evaporating liquid line for any contact angle.
    Petsi AJ; Burganos VN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036324. PubMed ID: 18851160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature distribution inside an evaporating two-dimensional droplet lying on curved or flat substrates.
    Petsi AJ; Burganos VN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011201. PubMed ID: 21867157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical solution for inviscid flow inside an evaporating sessile drop.
    Masoud H; Felske JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016301. PubMed ID: 19257133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple analytical model of capillary flow in an evaporating sessile drop.
    Tarasevich YY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):027301. PubMed ID: 15783459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental investigation of evaporation from low-contact-angle sessile droplets.
    Dhavaleswarapu HK; Migliaccio CP; Garimella SV; Murthy JY
    Langmuir; 2010 Jan; 26(2):880-8. PubMed ID: 19775145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convective flows in evaporating sessile droplets.
    Barmi MR; Meinhart CD
    J Phys Chem B; 2014 Mar; 118(9):2414-21. PubMed ID: 24512008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant-mediated control of colloid pattern assembly and attachment strength in evaporating droplets.
    Morales VL; Parlange JY; Wu M; PĂ©rez-Reche FJ; Zhang W; Sang W; Steenhuis TS
    Langmuir; 2013 Feb; 29(6):1831-40. PubMed ID: 23327491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative mechanism for coffee-ring deposition based on active role of free surface.
    Jafari Kang S; Vandadi V; Felske JD; Masoud H
    Phys Rev E; 2016 Dec; 94(6-1):063104. PubMed ID: 28085318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of fluid flow on the deposition of soluble surfactants through receding contact lines of volatile solvents.
    Beppler BK; Varanasi KS; Garoff S; Evmenenko G; Woods K
    Langmuir; 2008 Jun; 24(13):6705-11. PubMed ID: 18512880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the microfluid flow in an evaporating sessile droplet.
    Hu H; Larson RG
    Langmuir; 2005 Apr; 21(9):3963-71. PubMed ID: 15835962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coffee-stain growth dynamics on dry and wet surfaces.
    Boulogne F; Ingremeau F; Stone HA
    J Phys Condens Matter; 2017 Feb; 29(7):074001. PubMed ID: 28035085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of the particle distribution in inkjet printing through an evaporation-driven sol-gel transition.
    Talbot EL; Yang L; Berson A; Bain CD
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9572-83. PubMed ID: 24889140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of substrate heating on the evaporation dynamics of pinned water droplets.
    Girard F; Antoni M
    Langmuir; 2008 Oct; 24(20):11342-5. PubMed ID: 18823094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaporating drops on patterned surfaces: transition from pinned to moving triple line.
    Anantharaju N; Panchagnula M; Neti S
    J Colloid Interface Sci; 2009 Sep; 337(1):176-82. PubMed ID: 19501369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spreading, evaporation, and contact line dynamics of surfactant-laden microdrops.
    Gokhale SJ; Plawsky JL; Wayner PC
    Langmuir; 2005 Aug; 21(18):8188-97. PubMed ID: 16114921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet.
    Hu H; Larson RG
    Langmuir; 2005 Apr; 21(9):3972-80. PubMed ID: 15835963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaporation stains: suppressing the coffee-ring effect by contact angle hysteresis.
    Li YF; Sheng YJ; Tsao HK
    Langmuir; 2013 Jun; 29(25):7802-11. PubMed ID: 23721254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.