These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Crossover and universality in the Wolf-Villain model. Vvedensky DD Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):010601. PubMed ID: 12935119 [TBL] [Abstract][Full Text] [Related]
5. Edwards-Wilkinson equation from lattice transition rules. Vvedensky DD Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):025102. PubMed ID: 12636731 [TBL] [Abstract][Full Text] [Related]
6. How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations? Grima R; Thomas P; Straube AV J Chem Phys; 2011 Aug; 135(8):084103. PubMed ID: 21895155 [TBL] [Abstract][Full Text] [Related]
8. Langevin equations for competitive growth models. Silveira FA; Aarão Reis FD Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011601. PubMed ID: 22400575 [TBL] [Abstract][Full Text] [Related]
9. Transient regimes and crossover for epitaxial surfaces. Haselwandter CA; Vvedensky DD Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021606. PubMed ID: 20365573 [TBL] [Abstract][Full Text] [Related]
10. Statistical mechanics of the fluctuating lattice Boltzmann equation. Dünweg B; Schiller UD; Ladd AJ Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036704. PubMed ID: 17930358 [TBL] [Abstract][Full Text] [Related]
11. Scaling in the crossover from random to correlated growth. Aarão Reis FD Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021605. PubMed ID: 16605348 [TBL] [Abstract][Full Text] [Related]
12. Scaling of ballistic deposition from a Langevin equation. Haselwandter CA; Vvedensky DD Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):040101. PubMed ID: 16711773 [TBL] [Abstract][Full Text] [Related]
13. Dynamic properties in a family of competitive growing models. Horowitz CM; Albano EV Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031111. PubMed ID: 16605504 [TBL] [Abstract][Full Text] [Related]
14. Robust identification of harmonic oscillator parameters using the adjoint Fokker-Planck equation. Boujo E; Noiray N Proc Math Phys Eng Sci; 2017 Apr; 473(2200):20160894. PubMed ID: 28484333 [TBL] [Abstract][Full Text] [Related]
15. Fractional Fokker-Planck equation with tempered α-stable waiting times: langevin picture and computer simulation. Gajda J; Magdziarz M Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011117. PubMed ID: 20866575 [TBL] [Abstract][Full Text] [Related]
16. Equivalence of the fractional Fokker-Planck and subordinated Langevin equations: the case of a time-dependent force. Magdziarz M; Weron A; Klafter J Phys Rev Lett; 2008 Nov; 101(21):210601. PubMed ID: 19113398 [TBL] [Abstract][Full Text] [Related]
17. Langevin description of superdiffusive Lévy processes. Eule S; Zaburdaev V; Friedrich R; Geisel T Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041134. PubMed ID: 23214556 [TBL] [Abstract][Full Text] [Related]
18. Extracting cellular automaton rules from physical Langevin equation models for single and collective cell migration. Nava-Sedeño JM; Hatzikirou H; Peruani F; Deutsch A J Math Biol; 2017 Nov; 75(5):1075-1100. PubMed ID: 28243720 [TBL] [Abstract][Full Text] [Related]
19. Stochastic dynamics and denaturation of thermalized DNA. Deng ML; Zhu WQ Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021918. PubMed ID: 18352062 [TBL] [Abstract][Full Text] [Related]
20. Random deposition of particles of different sizes. Forgerini FL; Figueiredo W Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041602. PubMed ID: 19518240 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]