These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 16383589)

  • 21. Construction and accuracy of partial differential equation approximations to the chemical master equation.
    Grima R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056109. PubMed ID: 22181475
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Asymptotic dynamic scaling behavior of the (1+1)-dimensional Wolf-Villain model.
    Xun Z; Tang G; Han K; Xia H; Hao D; Li Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041126. PubMed ID: 22680438
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Subordinated diffusion and continuous time random walk asymptotics.
    Dybiec B; Gudowska-Nowak E
    Chaos; 2010 Dec; 20(4):043129. PubMed ID: 21198099
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle.
    Kaniadakis G; Hristopulos DT
    Entropy (Basel); 2018 Jun; 20(6):. PubMed ID: 33265516
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of noise in population dynamics cycles.
    Tomé T; de Oliveira MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061128. PubMed ID: 19658494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strong clustering of noninteracting, sliding passive scalars driven by fluctuating surfaces.
    Nagar A; Majumdar SN; Barma M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021124. PubMed ID: 17025410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Consequences of the H theorem from nonlinear Fokker-Planck equations.
    Schwämmle V; Nobre FD; Curado EM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041123. PubMed ID: 17994952
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mapping the Monte Carlo scheme to Langevin dynamics: a Fokker-Planck approach.
    Cheng XZ; Jalil MB; Lee HK; Okabe Y
    Phys Rev Lett; 2006 Feb; 96(6):067208. PubMed ID: 16606044
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diffusion in an expanding medium: Fokker-Planck equation, Green's function, and first-passage properties.
    Yuste SB; Abad E; Escudero C
    Phys Rev E; 2016 Sep; 94(3-1):032118. PubMed ID: 27739760
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solving the Fokker-Planck kinetic equation on a lattice.
    Moroni D; Rotenberg B; Hansen JP; Succi S; Melchionna S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066707. PubMed ID: 16907023
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analytical and Numerical Treatments of Conservative Diffusions and the Burgers Equation.
    Prodanov D
    Entropy (Basel); 2018 Jun; 20(7):. PubMed ID: 33265582
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Fokker-Planck equation for coupled Brown-Néel-rotation.
    Weizenecker J
    Phys Med Biol; 2018 Jan; 63(3):035004. PubMed ID: 29235990
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microscopic theory of anomalous diffusion based on particle interactions.
    Lutsko JF; Boon JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022108. PubMed ID: 24032776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lattice-Boltzmann-Langevin simulations of binary mixtures.
    Thampi SP; Pagonabarraga I; Adhikari R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046709. PubMed ID: 22181309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent developments in the kinetic theory of nucleation.
    Ruckenstein E; Djikaev YS
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hybrid simulations of lateral diffusion in fluctuating membranes.
    Reister-Gottfried E; Leitenberger SM; Seifert U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011908. PubMed ID: 17358185
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Time-fractional Caputo derivative versus other integrodifferential operators in generalized Fokker-Planck and generalized Langevin equations.
    Wei Q; Wang W; Zhou H; Metzler R; Chechkin A
    Phys Rev E; 2023 Aug; 108(2-1):024125. PubMed ID: 37723675
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Master equations and the theory of stochastic path integrals.
    Weber MF; Frey E
    Rep Prog Phys; 2017 Apr; 80(4):046601. PubMed ID: 28306551
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scaling of Langevin and molecular dynamics persistence times of nonhomogeneous fluids.
    Olivares-Rivas W; Colmenares PJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011117. PubMed ID: 22400522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fokker-Planck-Kramers equation for a Brownian gas in a magnetic field.
    Jiménez-Aquino JI; Romero-Bastida M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041117. PubMed ID: 17155032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.