These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 16383694)

  • 1. Variational principles and the shift in the front speed due to a cutoff.
    Méndez V; Campos D; Zemskov EP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056113. PubMed ID: 16383694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speed of pulled fronts with a cutoff.
    Benguria RD; Depassier MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051106. PubMed ID: 17677021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimal speed of fronts of reaction-convection-diffusion equations.
    Benguria RD; Depassier MC; Méndez V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031106. PubMed ID: 15089264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speed of wave-front solutions to hyperbolic reaction-diffusion equations.
    Méndez V; Fort J; Farjas J
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt A):5231-43. PubMed ID: 11970393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of environmental fluctuations on invasion fronts.
    Méndez V; Llopis I; Campos D; Horsthemke W
    J Theor Biol; 2011 Jul; 281(1):31-8. PubMed ID: 21549716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematic reduction of reaction-diffusion fronts with multiplicative noise: derivation of stochastic sharp-interface equations.
    Rocco A; Ramírez-Piscina L; Casademunt J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056116. PubMed ID: 12059656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Piecewise linear emulation of propagating fronts as a method for determining their speeds.
    Theodorakis S; Svoukis E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):027201. PubMed ID: 14525152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nernst-Planck analysis of propagating reaction-diffusion fronts in the aqueous iodate-arsenous acid system.
    Mercer SM; Banks JM; Leaist DG
    Phys Chem Chem Phys; 2007 Oct; 9(40):5457-68. PubMed ID: 17925972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weakly pushed nature of "pulled" fronts with a cutoff.
    Panja D; van Saarloos W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):057202. PubMed ID: 12059760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of a cutoff on pushed and bistable fronts of the reaction-diffusion equation.
    Benguria RD; Depassier MC; Haikala V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051101. PubMed ID: 18233617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluctuating pulled fronts: The origin and the effects of a finite particle cutoff.
    Panja D; van Saarloos W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036206. PubMed ID: 12366223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Velocity fluctuations of stochastic reaction fronts propagating into an unstable state: Strongly pushed fronts.
    Khain E; Meerson B; Sasorov P
    Phys Rev E; 2020 Aug; 102(2-1):022137. PubMed ID: 32942446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variational principles for polar piezoelectric media in elastic range.
    Altay G; Dökmeci MC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1980-9. PubMed ID: 19812001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of convective patterns in reaction fronts: a comparison of three models.
    Vasquez DA; Coroian DI
    Chaos; 2010 Sep; 20(3):033109. PubMed ID: 20887049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Front propagation in cellular flows for fast reaction and small diffusivity.
    Tzella A; Vanneste J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):011001. PubMed ID: 25122240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variational approximation and the use of collective coordinates.
    Dawes JH; Susanto H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063202. PubMed ID: 23848797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of constant electric fields on the buoyant stability of reaction fronts.
    Zadrazil A; Kiss IZ; D'Hernoncourt J; Sevcíková H; Merkin JH; De Wit A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026224. PubMed ID: 15783404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between buoyancy and diffusion-driven instabilities of propagating autocatalytic reaction fronts. I. Linear stability analysis.
    D'Hernoncourt J; Merkin JH; De Wit A
    J Chem Phys; 2009 Mar; 130(11):114502. PubMed ID: 19317540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluctuation-induced instabilities in front propagation up a comoving reaction gradient in two dimensions.
    Wylie CS; Levine H; Kessler DA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016119. PubMed ID: 16907163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speed of reaction-diffusion fronts in spatially heterogeneous media.
    Méndez V; Fort J; Rotstein HG; Fedotov S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 1):041105. PubMed ID: 14682921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.