These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 16383739)
21. Numerical simulation of gas flow and heat transfer in a rough microchannel using the lattice Boltzmann method. Dorari E; Saffar-Avval M; Mansoori Z Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063034. PubMed ID: 26764830 [TBL] [Abstract][Full Text] [Related]
22. Gas flow through rough microchannels in the transition flow regime. Deng Z; Chen Y; Shao C Phys Rev E; 2016 Jan; 93(1):013128. PubMed ID: 26871175 [TBL] [Abstract][Full Text] [Related]
23. Higher order slip according to the linearized Boltzmann equation with general boundary conditions. Lorenzani S Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1944):2228-36. PubMed ID: 21536569 [TBL] [Abstract][Full Text] [Related]
24. Lattice Boltzmann simulation of nonequilibrium effects in oscillatory gas flow. Tang GH; Gu XJ; Barber RW; Emerson DR; Zhang YH Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026706. PubMed ID: 18850972 [TBL] [Abstract][Full Text] [Related]
25. Multiparameter Analysis of Gas Transport Phenomena in Shale Gas Reservoirs: Apparent Permeability Characterization. Shen Y; Pang Y; Shen Z; Tian Y; Ge H Sci Rep; 2018 Feb; 8(1):2601. PubMed ID: 29422663 [TBL] [Abstract][Full Text] [Related]
26. Lattice Boltzmann modeling of permeability in porous materials with partially percolating voxels. Li R; Yang YS; Pan J; Pereira GG; Taylor JA; Clennell B; Zou C Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033301. PubMed ID: 25314558 [TBL] [Abstract][Full Text] [Related]
27. Lattice Boltzmann model for incompressible flows through porous media. Guo Z; Zhao TS Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036304. PubMed ID: 12366250 [TBL] [Abstract][Full Text] [Related]
28. Linking drainage front morphology with gaseous diffusion in unsaturated porous media: a lattice Boltzmann study. Chau JF; Or D Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056304. PubMed ID: 17279990 [TBL] [Abstract][Full Text] [Related]
29. Gas permeability of porous silicon nanostructures. Lysenko V; Vitiello J; Remaki B; Barbier D Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):017301. PubMed ID: 15324208 [TBL] [Abstract][Full Text] [Related]
30. Pore structure and limit pressure of gas slippage effect in tight sandstone. You L; Xue K; Kang Y; Liao Y; Kong L ScientificWorldJournal; 2013; 2013():572140. PubMed ID: 24379747 [TBL] [Abstract][Full Text] [Related]
31. High-order lattice Boltzmann models for wall-bounded flows at finite Knudsen numbers. Feuchter C; Schleifenbaum W Phys Rev E; 2016 Jul; 94(1-1):013304. PubMed ID: 27575233 [TBL] [Abstract][Full Text] [Related]
32. Multiscale modeling of gas flow behaviors in nanoporous shale matrix considering multiple transport mechanisms. Zhou W; Yang X; Liu X Phys Rev E; 2022 May; 105(5-2):055308. PubMed ID: 35706209 [TBL] [Abstract][Full Text] [Related]
33. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media. Wang M; Wang J; Pan N; Chen S Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036702. PubMed ID: 17500821 [TBL] [Abstract][Full Text] [Related]
34. Impact of hydraulic tortuosity on microporous and nanoporous media flow. Singh S Phys Rev E; 2024 Feb; 109(2-2):025106. PubMed ID: 38491708 [TBL] [Abstract][Full Text] [Related]
35. Analytical solution to predicting gaseous mass flow rates of microchannels in a wide range of Knudsen numbers. Lv Q; Liu X; Wang E; Wang S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013007. PubMed ID: 23944549 [TBL] [Abstract][Full Text] [Related]
36. Evaluation of a new solid boundary implementation in the lattice Boltzmann method for porous media considering permeability and apparent slip. Moqtaderi H; Esfahanian V Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1944):2193-201. PubMed ID: 21536565 [TBL] [Abstract][Full Text] [Related]
37. Slippage and viscosity predictions in carbon micropores and their influence on CO2 and CH4 transport. Firouzi M; Wilcox J J Chem Phys; 2013 Feb; 138(6):064705. PubMed ID: 23425486 [TBL] [Abstract][Full Text] [Related]
38. Unified lattice Boltzmann method for flow in multiscale porous media. Kang Q; Zhang D; Chen S Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056307. PubMed ID: 12513596 [TBL] [Abstract][Full Text] [Related]
39. Identifying the dominant transport mechanism in single nanoscale pores and 3D nanoporous media. Yin Y; Qu Z; Prodanović M; Landry CJ Fundam Res; 2023 May; 3(3):409-421. PubMed ID: 38933770 [TBL] [Abstract][Full Text] [Related]
40. Finite-volume method with lattice Boltzmann flux scheme for incompressible porous media flow at the representative-elementary-volume scale. Hu Y; Li D; Shu S; Niu X Phys Rev E; 2016 Feb; 93(2):023308. PubMed ID: 26986440 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]