These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 16383746)
1. Acceleration- and deceleration-phase nonlinear Rayleigh-Taylor growth at spherical interfaces. Clark DS; Tabak M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056308. PubMed ID: 16383746 [TBL] [Abstract][Full Text] [Related]
2. Nonlinear Rayleigh-Taylor growth in converging geometry. Clark DS; Tabak M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):055302. PubMed ID: 16089591 [TBL] [Abstract][Full Text] [Related]
3. Rayleigh-Taylor instability with complex acceleration history. Dimonte G; Ramaprabhu P; Andrews M Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046313. PubMed ID: 17995112 [TBL] [Abstract][Full Text] [Related]
4. Ablative stabilization of the deceleration phase rayleigh-taylor instability. Lobatchev V; Betti R Phys Rev Lett; 2000 Nov; 85(21):4522-5. PubMed ID: 11082586 [TBL] [Abstract][Full Text] [Related]
5. Single-mode dynamics of the Rayleigh-Taylor instability at any density ratio. Ramaprabhu P; Dimonte G Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036314. PubMed ID: 15903581 [TBL] [Abstract][Full Text] [Related]
7. Evolution of the single-mode Rayleigh-Taylor instability under the influence of time-dependent accelerations. Ramaprabhu P; Karkhanis V; Banerjee R; Varshochi H; Khan M; Lawrie AG Phys Rev E; 2016 Jan; 93(1):013118. PubMed ID: 26871165 [TBL] [Abstract][Full Text] [Related]
8. Lattice Boltzmann simulation of three-dimensional Rayleigh-Taylor instability. Liang H; Li QX; Shi BC; Chai ZH Phys Rev E; 2016 Mar; 93(3):033113. PubMed ID: 27078453 [TBL] [Abstract][Full Text] [Related]
9. Secondary instability of the spike-bubble structures induced by nonlinear Rayleigh-Taylor instability with a diffuse interface. Han L; Yuan J; Dong M; Fan Z Phys Rev E; 2021 Sep; 104(3-2):035108. PubMed ID: 34654080 [TBL] [Abstract][Full Text] [Related]
10. Effects of temporal density variation and convergent geometry on nonlinear bubble evolution in classical Rayleigh-Taylor instability. Goncharov VN; Li D Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046306. PubMed ID: 15903785 [TBL] [Abstract][Full Text] [Related]
11. Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers. Goncharov VN Phys Rev Lett; 2002 Apr; 88(13):134502. PubMed ID: 11955101 [TBL] [Abstract][Full Text] [Related]
12. Late-time quadratic growth in single-mode Rayleigh-Taylor instability. Wei T; Livescu D Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046405. PubMed ID: 23214698 [TBL] [Abstract][Full Text] [Related]
13. Simple potential-flow model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for all density ratios. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026301. PubMed ID: 12636794 [TBL] [Abstract][Full Text] [Related]
14. Solution to Rayleigh-Taylor instabilities: Bubbles, spikes, and their scalings. Mikaelian KO Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053009. PubMed ID: 25353882 [TBL] [Abstract][Full Text] [Related]
15. Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density. Yu CX; Xue C; Liu J; Hu XY; Liu YY; Ye WH; Wang LF; Wu JF; Fan ZF Phys Rev E; 2018 Jan; 97(1-1):013102. PubMed ID: 29448344 [TBL] [Abstract][Full Text] [Related]
16. Effects of ionization gradients on inertial-confinement-fusion capsule hydrodynamic stability. Amendt P Phys Rev Lett; 2008 Sep; 101(11):115004. PubMed ID: 18851291 [TBL] [Abstract][Full Text] [Related]
17. Vortex model and simulations for Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036703. PubMed ID: 15089438 [TBL] [Abstract][Full Text] [Related]
18. Monoenergetic-proton-radiography measurements of implosion dynamics in direct-drive inertial-confinement fusion. Li CK; Séguin FH; Rygg JR; Frenje JA; Manuel M; Petrasso RD; Betti R; Delettrez J; Knauer JP; Marshall F; Meyerhofer DD; Shvarts D; Smalyuk VA; Stoeckl C; Landen OL; Town RP; Back CA; Kilkenny JD Phys Rev Lett; 2008 Jun; 100(22):225001. PubMed ID: 18643423 [TBL] [Abstract][Full Text] [Related]
19. Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities. Laney D; Bremer PT; Mascarenhas A; Miller P; Pascucci V IEEE Trans Vis Comput Graph; 2006; 12(5):1053-60. PubMed ID: 17080834 [TBL] [Abstract][Full Text] [Related]
20. Density dependence of a Zufiria-type model for Rayleigh-Taylor bubble fronts. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):045301. PubMed ID: 15600452 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]