These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Fastest growing linear Rayleigh-Taylor modes at solid/fluid and solid/solid interfaces. Terrones G Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036306. PubMed ID: 15903573 [TBL] [Abstract][Full Text] [Related]
9. Effects of surface tension and viscosity on the growth rates of Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):055302. PubMed ID: 20365034 [TBL] [Abstract][Full Text] [Related]
10. Transition to plastic regime for Rayleigh-Taylor instability in soft solids. Boyaci A; Banerjee A Phys Rev E; 2024 May; 109(5-2):055103. PubMed ID: 38907420 [TBL] [Abstract][Full Text] [Related]
11. Rayleigh-Taylor stability boundary at solid-liquid interfaces. Piriz AR; Sun YB; Tahir NA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023026. PubMed ID: 24032942 [TBL] [Abstract][Full Text] [Related]
12. Linear analysis of Atwood number effects on shear instability in the elastic-plastic solids. Wang X; Hu XM; Wang ST; Pan H; Yin JW Sci Rep; 2021 Sep; 11(1):18049. PubMed ID: 34508108 [TBL] [Abstract][Full Text] [Related]
13. Exploring the Atwood-number dependence of the highly nonlinear Rayleigh-Taylor instability regime in high-energy-density conditions. Rigon G; Albertazzi B; Mabey P; Michel T; Falize E; Bouffetier V; Ceurvorst L; Masse L; Koenig M; Casner A Phys Rev E; 2021 Oct; 104(4-2):045213. PubMed ID: 34781551 [TBL] [Abstract][Full Text] [Related]
15. Hydrodynamic instability of elastic-plastic solid plates at the early stage of acceleration. Piriz AR; Sun YB; Tahir NA Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033007. PubMed ID: 25871202 [TBL] [Abstract][Full Text] [Related]
16. Rayleigh-Taylor linear growth at an interface between an elastoplastic solid and a viscous liquid. Piriz AR; Sun YB; Tahir NA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063022. PubMed ID: 25019894 [TBL] [Abstract][Full Text] [Related]
17. Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density. II. Asymptotic solution and its interpretation. Dong M; Fan Z; Yu C Phys Rev E; 2019 Jan; 99(1-1):013109. PubMed ID: 30780233 [TBL] [Abstract][Full Text] [Related]
18. Linear Rayleigh-Taylor instability in an accelerated Newtonian fluid with finite width. Piriz SA; Piriz AR; Tahir NA Phys Rev E; 2018 Apr; 97(4-1):043106. PubMed ID: 29758639 [TBL] [Abstract][Full Text] [Related]
19. Density dependence of a Zufiria-type model for Rayleigh-Taylor bubble fronts. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):045301. PubMed ID: 15600452 [TBL] [Abstract][Full Text] [Related]
20. Asymptotic behavior of the Rayleigh-Taylor instability. Duchemin L; Josserand C; Clavin P Phys Rev Lett; 2005 Jun; 94(22):224501. PubMed ID: 16090402 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]