These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 16383773)

  • 1. Spontaneous emission in one-dimensional photonic crystals.
    Sánchez AS; Halevi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056609. PubMed ID: 16383773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dipole radiation in a one-dimensional photonic crystal: TE polarization.
    Alvarado-Rodriguez I; Halevi P; Sánchez AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056613. PubMed ID: 11415037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dipole radiation in a one-dimensional photonic crystal. II. TM polarization.
    Zurita-Sánchez JR; Sánchez AS; Halevi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046613. PubMed ID: 12443355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analysis of photon density of states for a realistic superlattice with omnidirectional light propagation.
    Lin MC; Jao RF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046613. PubMed ID: 17155198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous emission from radiative chiral nematic liquid crystals at the photonic band-gap edge: an investigation into the role of the density of photon states near resonance.
    Mavrogordatos TK; Morris SM; Wood SM; Coles HJ; Wilkinson TD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062504. PubMed ID: 23848702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials.
    Bria D; Djafari-Rouhani B; Akjouj A; Dobrzynski L; Vigneron JP; El-Boudouti EH; Nougaoui A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066613. PubMed ID: 15244770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Second quantization and atomic spontaneous emission inside one-dimensional photonic crystals via a quasinormal-modes approach.
    Severini S; Settimi A; Sibilia C; Bertolotti M; Napoli A; Messina A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056614. PubMed ID: 15600786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonic band gap enhancement in frequency-dependent dielectrics.
    Toader O; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046605. PubMed ID: 15600545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiating dipoles in photonic crystals.
    Busch K; Vats N; John S; Sanders BC
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt B):4251-60. PubMed ID: 11088954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exciton polaritons in one-dimensional metal-semiconductor photonic crystals.
    Márquez-Islas R; Flores-Desirena B; Pérez-Rodríguez F
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6584-8. PubMed ID: 19205244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photonic band gap effects on spontaneous emission lifetimes of an assembly of atoms in two-dimensional photonic crystals.
    Zhou YS; Wang XH; Gu BY; Wang FH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):017601. PubMed ID: 16090152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals.
    Lodahl P; Floris Van Driel A; Nikolaev IS; Irman A; Overgaag K; Vanmaekelbergh D; Vos WL
    Nature; 2004 Aug; 430(7000):654-7. PubMed ID: 15295594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density of states for a dielectric superlattice. II. TM polarization.
    Zurita-Sanchez JR; Halevi P
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5B):5802-7. PubMed ID: 11031640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General electromagnetic density of modes for a one-dimensional photonic crystal.
    Ooi CH; Au Yeung TC ; Lim TK; Kam CH
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt B):7405-9. PubMed ID: 11102101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanolayer-embedded pseudo-photonic crystals.
    Park BJ; Jin YH; Park NR; Kim JT; Kim MK
    Nanotechnology; 2019 Nov; 30(47):47LT01. PubMed ID: 31434058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous-emission rates in finite photonic crystals of plane scatterers.
    Wubs M; Suttorp LG; Lagendijk A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016616. PubMed ID: 14995745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Switching control of spontaneous emission by polarized atoms in two-dimensional photonic crystals.
    Zhou YS; Wang XH; Gu BY; Wang FH
    Phys Rev Lett; 2006 Mar; 96(10):103601. PubMed ID: 16605733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupled dipole method for radiation dynamics in finite photonic crystal structures.
    Bordas F; Louvion N; Callard S; Chaumet PC; Rahmani A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056601. PubMed ID: 16803051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal higher-lying band gaps for photonic crystals with large dielectric contrast.
    Chern RL; Chao SD
    Opt Express; 2008 Oct; 16(21):16600-8. PubMed ID: 18852769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stokes parameter studies of spontaneous emission from chiral nematic liquid crystals as a one-dimensional photonic stopband crystal: experiment and theory.
    Woon KL; O'Neill M; Richards GJ; Aldred MP; Kelly SM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 1):041706. PubMed ID: 15903690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.