These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 16383783)
1. Lattice Boltzmann interface capturing method for incompressible flows. Zheng HW; Shu C; Chew YT Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056705. PubMed ID: 16383783 [TBL] [Abstract][Full Text] [Related]
2. Interface-capturing lattice Boltzmann equation model for two-phase flows. Lou Q; Guo Z Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013302. PubMed ID: 25679734 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional lattice Boltzmann model for compressible flows. Sun C; Hsu AT Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016303. PubMed ID: 12935242 [TBL] [Abstract][Full Text] [Related]
4. Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts. Zu YQ; He S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043301. PubMed ID: 23679542 [TBL] [Abstract][Full Text] [Related]
5. Consistent lattice Boltzmann equations for phase transitions. Siebert DN; Philippi PC; Mattila KK Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):053310. PubMed ID: 25493907 [TBL] [Abstract][Full Text] [Related]
6. Curvature estimation from a volume-of-fluid indicator function for the simulation of surface tension and wetting with a free-surface lattice Boltzmann method. Bogner S; RĂ¼de U; Harting J Phys Rev E; 2016 Apr; 93():043302. PubMed ID: 27176423 [TBL] [Abstract][Full Text] [Related]
7. Lattice Boltzmann method for incompressible flows with large pressure gradients. Shi Y; Zhao TS; Guo ZL Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026704. PubMed ID: 16605480 [TBL] [Abstract][Full Text] [Related]
8. Development of an efficient gas kinetic scheme for simulation of two-dimensional incompressible thermal flows. Yang LM; Shu C; Yang WM; Wu J Phys Rev E; 2018 Jan; 97(1-1):013305. PubMed ID: 29448389 [TBL] [Abstract][Full Text] [Related]
9. Hybrid Allen-Cahn-based lattice Boltzmann model for incompressible two-phase flows: The reduction of numerical dispersion. Hu Y; Li D; Jin L; Niu X; Shu S Phys Rev E; 2019 Feb; 99(2-1):023302. PubMed ID: 30934363 [TBL] [Abstract][Full Text] [Related]
10. Filter-matrix lattice Boltzmann model for microchannel gas flows. Zhuo C; Zhong C Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053311. PubMed ID: 24329383 [TBL] [Abstract][Full Text] [Related]
13. Conjugate heat and mass transfer in the lattice Boltzmann equation method. Li L; Chen C; Mei R; Klausner JF Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043308. PubMed ID: 24827365 [TBL] [Abstract][Full Text] [Related]
14. Chebyshev collocation spectral lattice Boltzmann method for simulation of low-speed flows. Hejranfar K; Hajihassanpour M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013301. PubMed ID: 25679733 [TBL] [Abstract][Full Text] [Related]
15. Simulation of two-phase liquid-vapor flows using a high-order compact finite-difference lattice Boltzmann method. Hejranfar K; Ezzatneshan E Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053305. PubMed ID: 26651814 [TBL] [Abstract][Full Text] [Related]
16. High-order flux reconstruction thermal lattice Boltzmann flux solver for simulation of incompressible thermal flows. Ma C; Wu J; Gu X; Yang L Phys Rev E; 2022 Sep; 106(3-2):035301. PubMed ID: 36266878 [TBL] [Abstract][Full Text] [Related]
18. Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows. Li Q; Luo KH; Gao YJ; He YL Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026704. PubMed ID: 22463354 [TBL] [Abstract][Full Text] [Related]
19. Phase-field-based lattice Boltzmann model for immiscible incompressible N-phase flows. Yuan X; Liang H; Chai Z; Shi B Phys Rev E; 2020 Jun; 101(6-1):063310. PubMed ID: 32688516 [TBL] [Abstract][Full Text] [Related]
20. Phase-field lattice Boltzmann model for interface tracking of a binary fluid system based on the Allen-Cahn equation. Zu YQ; Li AD; Wei H Phys Rev E; 2020 Nov; 102(5-1):053307. PubMed ID: 33327126 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]