These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 16383829)

  • 1. Submicron positioning of single atoms in a microcavity.
    Nussmann S; Hijlkema M; Weber B; Rohde F; Rempe G; Kuhn A
    Phys Rev Lett; 2005 Oct; 95(17):173602. PubMed ID: 16383829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deterministic loading of individual atoms to a high-finesse optical cavity.
    Fortier KM; Kim SY; Gibbons MJ; Ahmadi P; Chapman MS
    Phys Rev Lett; 2007 Jun; 98(23):233601. PubMed ID: 17677905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Many-atom-cavity QED system with homogeneous atom-cavity coupling.
    Lee J; Vrijsen G; Teper I; Hosten O; Kasevich MA
    Opt Lett; 2014 Jul; 39(13):4005-8. PubMed ID: 24978793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip.
    Colombe Y; Steinmetz T; Dubois G; Linke F; Hunger D; Reichel J
    Nature; 2007 Nov; 450(7167):272-6. PubMed ID: 17994094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of cavity-mediated long-range light forces between strongly coupled atoms.
    Munstermann P; Fischer T; Maunz P; Pinkse PW; Rempe G
    Phys Rev Lett; 2000 May; 84(18):4068-71. PubMed ID: 10990612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feedback and compensation scheme to suppress the thermal effects from a dipole trap beam for the optical fiber microcavity.
    Pan Y; Li L; Zhou X; Huang D; Shen Z; Wang J; Li C; Guo G
    Opt Express; 2022 Dec; 30(26):46280-46293. PubMed ID: 36558585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ground-state cooling of a single atom at the center of an optical cavity.
    Reiserer A; Nölleke C; Ritter S; Rempe G
    Phys Rev Lett; 2013 May; 110(22):223003. PubMed ID: 23767719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sub-poissonian loading of single atoms in a microscopic dipole trap.
    Schlosser N; Reymond G; Protsenko I; Grangier P
    Nature; 2001 Jun; 411(6841):1024-7. PubMed ID: 11429597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. State-insensitive cooling and trapping of single atoms in an optical cavity.
    McKeever J; Buck JR; Boozer AD; Kuzmich A; Nägerl HC; Stamper-Kurn DM; Kimble HJ
    Phys Rev Lett; 2003 Apr; 90(13):133602. PubMed ID: 12689287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cavity cooling of a single atom.
    Maunz P; Puppe T; Schuster I; Syassen N; Pinkse PW; Rempe G
    Nature; 2004 Mar; 428(6978):50-2. PubMed ID: 14999275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deterministic delivery of a single atom.
    Kuhr S; Alt W; Schrader D; Muller M; Gomer V; Meschede D
    Science; 2001 Jul; 293(5528):278-80. PubMed ID: 11408622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time detection of individual atoms falling through a high-finesse optical cavity.
    Mabuchi H; Turchette QA; Chapman MS; Kimble HJ
    Opt Lett; 1996 Sep; 21(17):1393-5. PubMed ID: 19876363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Submicrometer position control of single trapped neutral atoms.
    Dotsenko I; Alt W; Khudaverdyan M; Kuhr S; Meschede D; Miroshnychenko Y; Schrader D; Rauschenbeutel A
    Phys Rev Lett; 2005 Jul; 95(3):033002. PubMed ID: 16090739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of strong coupling between one atom and a monolithic microresonator.
    Aoki T; Dayan B; Wilcut E; Bowen WP; Parkins AS; Kippenberg TJ; Vahala KJ; Kimble HJ
    Nature; 2006 Oct; 443(7112):671-4. PubMed ID: 17035998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feedback on the motion of a single atom in an optical cavity.
    Fischer T; Maunz P; Pinkse PW; Puppe T; Rempe G
    Phys Rev Lett; 2002 Apr; 88(16):163002. PubMed ID: 11955231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High finesse bow-tie cavity for strong atom-photon coupling in Rydberg arrays.
    Chen YT; Szurek M; Hu B; de Hond J; Braverman B; Vuletic V
    Opt Express; 2022 Oct; 30(21):37426-37435. PubMed ID: 36258331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Normal mode splitting and mechanical effects of an optical lattice in a ring cavity.
    Klinner J; Lindholdt M; Nagorny B; Hemmerich A
    Phys Rev Lett; 2006 Jan; 96(2):023002. PubMed ID: 16486567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overlapping two standing waves in a microcavity for a multi-atom photon interface.
    Garcia S; Ferri F; Reichel J; Long R
    Opt Express; 2020 May; 28(10):15515-15528. PubMed ID: 32403578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of light pulse propagation with only a few cold atoms in a high-finesse microcavity.
    Shimizu Y; Shiokawa N; Yamamoto N; Kozuma M; Kuga T; Deng L; Hagley EW
    Phys Rev Lett; 2002 Dec; 89(23):233001. PubMed ID: 12485002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A technique for individual atom delivery into a crossed vortex bottle beam trap using a dynamic 1D optical lattice.
    Dinardo BA; Anderson DZ
    Rev Sci Instrum; 2016 Dec; 87(12):123108. PubMed ID: 28040917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.