These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 1638387)

  • 41. Ultrastructural analysis of the paranodal junction of myelinated fibers in 31-month-old-rats.
    Sugiyama I; Tanaka K; Akita M; Yoshida K; Kawase T; Asou H
    J Neurosci Res; 2002 Nov; 70(3):309-17. PubMed ID: 12391590
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanisms of calcium and sodium fluxes in anoxic myelinated central nervous system axons.
    Stys PK; Lopachin RM
    Neuroscience; 1998 Jan; 82(1):21-32. PubMed ID: 9483500
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A quantitative study of developing axons and glia following altered gliogenesis in rat optic nerve.
    Black JA; Waxman SG; Ransom BR; Feliciano MD
    Brain Res; 1986 Aug; 380(1):122-35. PubMed ID: 2428420
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A quantitative analysis of frog optic nerve regeneration: is retrograde ganglion cell death or collateral axonal loss related to selective reinnervation?
    Stelzner DJ; Strauss JA
    J Comp Neurol; 1986 Mar; 245(1):83-106. PubMed ID: 3485663
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chronic swelling and abnormal myelination during secondary degeneration after partial injury to a central nervous system tract.
    Payne SC; Bartlett CA; Harvey AR; Dunlop SA; Fitzgerald M
    J Neurotrauma; 2011 Jun; 28(6):1077-88. PubMed ID: 21381867
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rat optic nerve: electrophysiological, pharmacological and anatomical studies during development.
    Foster RE; Connors BW; Waxman SG
    Brain Res; 1982 Mar; 255(3):371-86. PubMed ID: 7066695
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Axonal cytoskeletal changes after non-disruptive axonal injury.
    Jafari SS; Maxwell WL; Neilson M; Graham DI
    J Neurocytol; 1997 Apr; 26(4):207-21. PubMed ID: 9192287
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Remodelling of optic nerve myelin sheaths and axons during metamorphosis in Xenopus laevis.
    Cullen MJ; Webster HD
    J Comp Neurol; 1979 Mar; 184(2):353-62. PubMed ID: 762287
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biphasic cellular response to transection in the newt optic nerve: glial reactivity precedes axonal degeneration.
    Phillips LL; Turner JE
    J Neurocytol; 1991 Jan; 20(1):51-64. PubMed ID: 2027036
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Calpain-dependent neurofilament breakdown in anoxic and ischemic rat central axons.
    Stys PK; Jiang Q
    Neurosci Lett; 2002 Aug; 328(2):150-4. PubMed ID: 12133577
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of polyvalent cations and dihydropyridine calcium channel blockers on recovery of CNS white matter from anoxia.
    Stys PK; Ransom BR; Waxman SG
    Neurosci Lett; 1990 Jul; 115(2-3):293-9. PubMed ID: 2234507
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Induction of paranodal myelin detachment and sodium channel loss in vivo by Campylobacter jejuni DNA-binding protein from starved cells (C-Dps) in myelinated nerve fibers.
    Piao H; Minohara M; Kawamura N; Li W; Mizunoe Y; Umehara F; Goto Y; Kusunoki S; Matsushita T; Ikenaka K; Maejima T; Nabekura J; Yamasaki R; Kira J
    J Neurol Sci; 2010 Jan; 288(1-2):54-62. PubMed ID: 19880143
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Surviving anoxia: a tale of two white matter tracts.
    Baltan S
    Crit Rev Neurobiol; 2006; 18(1-2):95-103. PubMed ID: 17725512
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Anoxia-induced extracellular ionic changes in CNS white matter: the role of glial cells.
    Ransom BR; Philbin DM
    Can J Physiol Pharmacol; 1992; 70 Suppl():S181-9. PubMed ID: 1295669
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regeneration in the rat optic nerve after cold injury.
    Murakami M; Ide C; Kanaya H
    J Neurosurg; 1989 Aug; 71(2):254-65. PubMed ID: 2746349
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Secondary Degeneration Impairs Myelin Ultrastructural Development in Adulthood following Adolescent Neurotrauma in the Rat Optic Nerve.
    Lins BR; Anyaegbu CC; McGonigle T; Hellewell SC; Patel P; Reagan H; Rooke-Wiesner C; Warnock A; Archer M; Hemmi JM; Bartlett C; Fitzgerald M
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834755
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Axonal L-type Ca2+ channels and anoxic injury in rat CNS white matter.
    Brown AM; Westenbroek RE; Catterall WA; Ransom BR
    J Neurophysiol; 2001 Feb; 85(2):900-11. PubMed ID: 11160521
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inhibition of protein synthesis during CNS myelination produces focal accumulations of membrane vesicles in oligodendrocytes.
    Cullen MJ; Webster HD
    J Neurocytol; 1989 Dec; 18(6):763-74. PubMed ID: 2621476
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dysmyelination, demyelination and reactive astrogliosis in the optic nerve of the taiep rat.
    Krsulovic J; Couve E; Roncagliolo M
    Biol Res; 1999; 32(4):253-62. PubMed ID: 10983245
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pharmacological protection of CNS white matter during anoxia: actions of phenytoin, carbamazepine and diazepam.
    Fern R; Ransom BR; Stys PK; Waxman SG
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1549-55. PubMed ID: 8371157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.