These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 16383904)

  • 1. Attractor selection in chaotic dynamics.
    Meucci R; Allaria E; Salvadori F; Arecchi FT
    Phys Rev Lett; 2005 Oct; 95(18):184101. PubMed ID: 16383904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attractor selection in a modulated laser and in the Lorenz circuit.
    Meucci R; Salvadori F; Naimee KA; Brugioni S; Goswami BK; Boccaletti S; Arecchi FT
    Philos Trans A Math Phys Eng Sci; 2008 Feb; 366(1864):475-86. PubMed ID: 17673407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of chaotic saddles by classification of unstable periodic orbits: Kuramoto-Sivashinsky equation.
    Saiki Y; Yamada M; Chian AC; Miranda RA; Rempel EL
    Chaos; 2015 Oct; 25(10):103123. PubMed ID: 26520089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attractor switching by neural control of chaotic neurodynamics.
    Pasemann F; Stollenwerk N
    Network; 1998 Nov; 9(4):549-61. PubMed ID: 10221579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extreme events in chaotic lasers with modulated parameter.
    Metayer C; Serres A; Rosero EJ; Barbosa WA; de Aguiar FM; Leite JR; Tredicce JR
    Opt Express; 2014 Aug; 22(17):19850-9. PubMed ID: 25321196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noise-free stochastic resonance at an interior crisis.
    Jüngling T; Benner H; Stemler T; Just W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036216. PubMed ID: 18517494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mixed-coexistence of periodic orbits and chaotic attractors in an inertial neural system with a nonmonotonic activation function.
    Song ZG; Xu J; Zhen B
    Math Biosci Eng; 2019 Jul; 16(6):6406-6425. PubMed ID: 31698569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clustering, chaos, and crisis in a bailout embedding map.
    Thyagu NN; Gupte N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046218. PubMed ID: 17995093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermittency induced by attractor-merging crisis in the Kuramoto-Sivashinsky equation.
    Rempel EL; Chian AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016203. PubMed ID: 15697694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bistable chaos without symmetry in generalized synchronization.
    Guan S; Lai CH; Wei GW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036209. PubMed ID: 15903548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting and controlling unstable periodic orbits that are not part of a chaotic attractor.
    Perc M; Marhl M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016204. PubMed ID: 15324149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of impurities in a three-dimensional volume-preserving map.
    Das S; Gupte N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012906. PubMed ID: 25122359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal periodic orbits of continuous time chaotic systems.
    Yang TH; Hunt BR; Ott E
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):1950-9. PubMed ID: 11088659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of an associative memory using unstable periodic orbits of a chaotic attractor.
    Wagner C; Stucki JW
    J Theor Biol; 2002 Apr; 215(3):375-84. PubMed ID: 12054844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperbolic chaotic attractor in amplitude dynamics of coupled self-oscillators with periodic parameter modulation.
    Isaeva OB; Kuznetsov SP; Mosekilde E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016228. PubMed ID: 21867294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bistability and hidden attractors in the paradigmatic Rössler'76 system.
    Malasoma JM; Malasoma N
    Chaos; 2020 Dec; 30(12):123144. PubMed ID: 33380068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homoclinic tangency and chaotic attractor disappearance in a dripping faucet experiment.
    Pinto RD; Sartorelli JC
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):342-7. PubMed ID: 11046271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Random parameter-switching synthesis of a class of hyperbolic attractors.
    Danca MF
    Chaos; 2008 Sep; 18(3):033111. PubMed ID: 19045449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global bifurcations in fractional-order chaotic systems with an extended generalized cell mapping method.
    Liu X; Hong L; Jiang J
    Chaos; 2016 Aug; 26(8):084304. PubMed ID: 27586621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled destruction of chaos in the multistable regime.
    Goswami BK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016219. PubMed ID: 17677555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.