These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 16383915)

  • 21. High-frequency micromechanical resonators from aluminium-carbon nanotube nanolaminates.
    Bak JH; Kim YD; Hong SS; Lee BY; Lee SR; Jang JH; Kim M; Char K; Hong S; Park YD
    Nat Mater; 2008 Jun; 7(6):459-63. PubMed ID: 18425133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electromechanical coupling and design considerations in single-layer MoS2 suspended-channel transistors and resonators.
    Yang R; Islam A; Feng PX
    Nanoscale; 2015 Dec; 7(47):19921-9. PubMed ID: 26580457
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Variable-force microscopy for advanced characterization of horizontally aligned carbon nanotubes.
    Almaqwashi AA; Kevek JW; Burton RM; DeBorde T; Minot ED
    Nanotechnology; 2011 Jul; 22(27):275717. PubMed ID: 21613731
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Large-strain, multiform movements from designable electrothermal actuators based on large highly anisotropic carbon nanotube sheets.
    Li Q; Liu C; Lin YH; Liu L; Jiang K; Fan S
    ACS Nano; 2015 Jan; 9(1):409-18. PubMed ID: 25559661
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photomask-based integration process of low-defect suspended carbon nanotubes into SOI MEMS.
    Lee SW; Muoth M; Hierold C
    Nanotechnology; 2014 May; 25(21):215301. PubMed ID: 24787500
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A tunable carbon nanotube electromechanical oscillator.
    Sazonova V; Yaish Y; Ustünel H; Roundy D; Arias TA; McEuen PL
    Nature; 2004 Sep; 431(7006):284-7. PubMed ID: 15372026
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Variable electron beam diameter achieved by a titanium oxide/carbon nanotube hetero-structure suitable for nanolithography.
    Abdi Y; Barati F
    Nanotechnology; 2013 Feb; 24(5):055303. PubMed ID: 23306765
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conductance oscillations in squashed carbon nanotubes.
    Gómez-Navarro C; Sáenz JJ; Gómez-Herrero J
    Phys Rev Lett; 2006 Feb; 96(7):076803. PubMed ID: 16606123
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Splitting of a vertical multiwalled carbon nanotube carpet to a graphene nanoribbon carpet and its use in supercapacitors.
    Zhang C; Peng Z; Lin J; Zhu Y; Ruan G; Hwang CC; Lu W; Hauge RH; Tour JM
    ACS Nano; 2013 Jun; 7(6):5151-9. PubMed ID: 23672653
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Establishing Ohmic contacts for in situ current-voltage characteristic measurements on a carbon nanotube inside the scanning electron microscope.
    Chen Q; Wang S; Peng LM
    Nanotechnology; 2006 Feb; 17(4):1087-98. PubMed ID: 21727386
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative displacement measurement of a nanotube cantilever with nanometer accuracy using epifluorescence microscopy.
    Park H; Kwon S; Kim S
    Rev Sci Instrum; 2009 May; 80(5):053703. PubMed ID: 19485512
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A two-step shearing strategy to disperse long carbon nanotubes from vertically aligned multiwalled carbon nanotube arrays for transparent conductive films.
    Xu GH; Zhang Q; Huang JQ; Zhao MQ; Zhou WP; Wei F
    Langmuir; 2010 Feb; 26(4):2798-804. PubMed ID: 19817403
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulation of the electromechanical behavior of multiwall carbon nanotubes.
    Pantano A; Buongiorno Nardelli M
    ACS Nano; 2009 Oct; 3(10):3266-72. PubMed ID: 19772304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scanned probe microscopy of electronic transport in carbon nanotubes.
    Bachtold A; Fuhrer MS; Plyasunov S; Forero M; Anderson EH; Zettl A; McEuen PL
    Phys Rev Lett; 2000 Jun; 84(26 Pt 1):6082-5. PubMed ID: 10991129
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Suspended carbon nanotube quantum wires with two gates.
    Cao J; Wang Q; Wang D; Dai H
    Small; 2005 Jan; 1(1):138-41. PubMed ID: 17193364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon nanotube mass production: principles and processes.
    Zhang Q; Huang JQ; Zhao MQ; Qian WZ; Wei F
    ChemSusChem; 2011 Jul; 4(7):864-89. PubMed ID: 21732544
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantifying Single-Carbon Nanotube-Electrode Contact via the Nanoimpact Method.
    Li X; Batchelor-McAuley C; Shao L; Sokolov SV; Young NP; Compton RG
    J Phys Chem Lett; 2017 Jan; 8(2):507-511. PubMed ID: 28071046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct growth of aligned carbon nanotubes on bulk metals.
    Talapatra S; Kar S; Pal SK; Vajtai R; Ci L; Victor P; Shaijumon MM; Kaur S; Nalamasu O; Ajayan PM
    Nat Nanotechnol; 2006 Nov; 1(2):112-6. PubMed ID: 18654161
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electron tunneling in carbon nanotube composites.
    Gau C; Kuo CY; Ko HS
    Nanotechnology; 2009 Sep; 20(39):395705. PubMed ID: 19724108
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Humidity effects on anisotropic nanofriction behaviors of aligned carbon nanotube carpets.
    Zhang J; Lu H; Sun Y; Ci L; Ajayan PM; Lou J
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9501-7. PubMed ID: 24004024
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.