These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 16384021)

  • 21. Evidence for long-lived, optically generated quenchers of excitons in single-walled carbon nanotubes.
    Siitonen AJ; Bachilo SM; Tsyboulski DA; Weisman RB
    Nano Lett; 2012 Jan; 12(1):33-8. PubMed ID: 22142025
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism of electrolyte-induced brightening in single-wall carbon nanotubes.
    Duque JG; Oudjedi L; Crochet JJ; Tretiak S; Lounis B; Doorn SK; Cognet L
    J Am Chem Soc; 2013 Mar; 135(9):3379-82. PubMed ID: 23421604
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrafast spectroscopy of excitons in single-walled carbon nanotubes.
    Korovyanko OJ; Sheng CX; Vardeny ZV; Dalton AB; Baughman RH
    Phys Rev Lett; 2004 Jan; 92(1):017403. PubMed ID: 14754017
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photoluminescence Intensity Fluctuations and Temperature-Dependent Decay Dynamics of Individual Carbon Nanotube sp
    Kim Y; Velizhanin KA; He X; Sarpkaya I; Yomogida Y; Tanaka T; Kataura H; Doorn SK; Htoon H
    J Phys Chem Lett; 2019 Mar; 10(6):1423-1430. PubMed ID: 30848914
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cross-polarized excitons in carbon nanotubes.
    Kilina S; Tretiak S; Doorn SK; Luo Z; Papadimitrakopoulos F; Piryatinski A; Saxena A; Bishop AR
    Proc Natl Acad Sci U S A; 2008 May; 105(19):6797-802. PubMed ID: 18463293
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extrinsic and intrinsic effects on the excited-state kinetics of single-walled carbon nanotubes.
    Jones M; Metzger WK; McDonald TJ; Engtrakul C; Ellingson RJ; Rumbles G; Heben MJ
    Nano Lett; 2007 Feb; 7(2):300-6. PubMed ID: 17243749
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probing the ultrafast dynamics of excitons in single semiconducting carbon nanotubes.
    Birkmeier K; Hertel T; Hartschuh A
    Nat Commun; 2022 Oct; 13(1):6290. PubMed ID: 36271091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrafast terahertz probes of interacting dark excitons in chirality-specific semiconducting single-walled carbon nanotubes.
    Luo L; Chatzakis I; Patz A; Wang J
    Phys Rev Lett; 2015 Mar; 114(10):107402. PubMed ID: 25815965
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photoinduced spontaneous free-carrier generation in semiconducting single-walled carbon nanotubes.
    Park J; Reid OG; Blackburn JL; Rumbles G
    Nat Commun; 2015 Nov; 6():8809. PubMed ID: 26531728
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy.
    Ma YZ; Stenger J; Zimmermann J; Bachilo SM; Smalley RE; Weisman RB; Fleming GR
    J Chem Phys; 2004 Feb; 120(7):3368-73. PubMed ID: 15268491
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Luminescence properties of individual empty and water-filled single-walled carbon nanotubes.
    Cambré S; Santos SM; Wenseleers W; Nugraha AR; Saito R; Cognet L; Lounis B
    ACS Nano; 2012 Mar; 6(3):2649-55. PubMed ID: 22314108
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of exciton dimensionality on spectral diffusion of single-walled carbon nanotubes.
    Ma X; Roslyak O; Wang F; Duque JG; Piryatinski A; Doorn SK; Htoon H
    ACS Nano; 2014 Oct; 8(10):10613-20. PubMed ID: 25251324
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brightening of triplet dark excitons by atomic hydrogen adsorption in single-walled carbon nanotubes observed by photoluminescence spectroscopy.
    Nagatsu K; Chiashi S; Konabe S; Homma Y
    Phys Rev Lett; 2010 Oct; 105(15):157403. PubMed ID: 21230938
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing exciton localization in single-walled carbon nanotubes using high-resolution near-field microscopy.
    Georgi C; Green AA; Hersam MC; Hartschuh A
    ACS Nano; 2010 Oct; 4(10):5914-20. PubMed ID: 20857945
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Observation of exciton-phonon sideband in individual metallic single-walled carbon nanotubes.
    Zeng H; Zhao H; Zhang FC; Cui X
    Phys Rev Lett; 2009 Apr; 102(13):136406. PubMed ID: 19392381
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescence dynamics and fine structure of dark excitons in semiconducting single-wall carbon nanotubes.
    Alfonsi J; Meneghetti M
    J Phys Condens Matter; 2012 Jun; 24(25):255501. PubMed ID: 22647714
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonlinear photoluminescence spectroscopy of carbon nanotubes with localized exciton states.
    Iwamura M; Akizuki N; Miyauchi Y; Mouri S; Shaver J; Gao Z; Cognet L; Lounis B; Matsuda K
    ACS Nano; 2014 Nov; 8(11):11254-60. PubMed ID: 25331628
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electron-electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes.
    Zhao H; Mazumdar S
    Phys Rev Lett; 2004 Oct; 93(15):157402. PubMed ID: 15524940
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High energetic excitons in carbon nanotubes directly probe charge-carriers.
    Soavi G; Scotognella F; Viola D; Hefner T; Hertel T; Cerullo G; Lanzani G
    Sci Rep; 2015 May; 5():9681. PubMed ID: 25959462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.