These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 16384110)

  • 1. Inertial effects in the response of viscous and viscoelastic fluids.
    Liverpool TB; MacKintosh FC
    Phys Rev Lett; 2005 Nov; 95(20):208303. PubMed ID: 16384110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-time inertial response of viscoelastic fluids: observation of vortex propagation.
    Atakhorrami M; Koenderink GH; Schmidt CF; MacKintosh FC
    Phys Rev Lett; 2005 Nov; 95(20):208302. PubMed ID: 16384109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competing effects of particle and medium inertia on particle diffusion in viscoelastic materials, and their ramifications for passive microrheology.
    Indei T; Schieber JD; Córdoba A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041504. PubMed ID: 22680480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscous-viscoelastic correspondence principle for Brownian motion.
    Makris N
    Phys Rev E; 2020 May; 101(5-1):052139. PubMed ID: 32575229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-time inertial response of viscoelastic fluids measured with Brownian motion and with active probes.
    Atakhorrami M; Mizuno D; Koenderink GH; Liverpool TB; MacKintosh FC; Schmidt CF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061508. PubMed ID: 18643273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlated fluctuations of microparticles in viscoelastic solutions: quantitative measurement of material properties by microrheology in the presence of optical traps.
    Atakhorrami M; Sulkowska JI; Addas KM; Koenderink GH; Tang JX; Levine AJ; Mackintosh FC; Schmidt CF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 1):061501. PubMed ID: 16906830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of fluid inertia on probe-tack adhesion.
    Dias EO; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016312. PubMed ID: 22400663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brittle fracture in viscoelastic materials as a pattern-formation process.
    Fleck M; Pilipenko D; Spatschek R; Brener EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046213. PubMed ID: 21599276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treating inertia in passive microbead rheology.
    Indei T; Schieber JD; Córdoba A; Pilyugina E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021504. PubMed ID: 22463216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of hydrodynamically coupled Brownian harmonic oscillators in a Maxwell fluid.
    Paul S
    Eur Phys J E Soft Matter; 2019 Sep; 42(9):122. PubMed ID: 31506736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscous heating and the stability of newtonian and viscoelastic taylor-couette flows.
    White JM; Muller SJ
    Phys Rev Lett; 2000 May; 84(22):5130-3. PubMed ID: 10990884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape oscillations of a viscoelastic drop.
    Khismatullin DB; Nadim A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 1):061508. PubMed ID: 11415111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Violation of the incompressibility of liquid by simple shear flow.
    Furukawa A; Tanaka H
    Nature; 2006 Sep; 443(7110):434-8. PubMed ID: 17006510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of viscoelastic membranes.
    Levine AJ; MacKintosh FC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 1):061606. PubMed ID: 12513296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of colloid probe atomic force microscopy to the adhesion of thin films of viscous and viscoelastic silicone fluids.
    Bowen J; Cheneler D; Andrews JW; Avery AR; Zhang Z; Ward MC; Adams MJ
    Langmuir; 2011 Sep; 27(18):11489-500. PubMed ID: 21842853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Granular avalanches in fluids.
    Courrech Du Pont S; Gondret P; Perrin B; Rabaud M
    Phys Rev Lett; 2003 Jan; 90(4):044301. PubMed ID: 12570427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of spontaneous penetration of viscoelastic fluids and biofluids into capillaries.
    Kornev KG; Neimark AV
    J Colloid Interface Sci; 2003 Jun; 262(1):253-62. PubMed ID: 16256602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saffman-Taylor instability of viscoelastic fluids: from viscous fingering to elastic fractures.
    Mora S; Manna M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026305. PubMed ID: 20365649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalous diffusion in viscoelastic media with active force dipoles.
    Yasuda K; Okamoto R; Komura S
    Phys Rev E; 2017 Mar; 95(3-1):032417. PubMed ID: 28415254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accounting for inertia effects to access the high-frequency microrheology of viscoelastic fluids.
    Domínguez-García P; Cardinaux F; Bertseva E; Forró L; Scheffold F; Jeney S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):060301. PubMed ID: 25615034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.