These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 16384111)

  • 1. Droplet traffic at a simple junction at low capillary numbers.
    Engl W; Roche M; Colin A; Panizza P; Ajdari A
    Phys Rev Lett; 2005 Nov; 95(20):208304. PubMed ID: 16384111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competition between local collisions and collective hydrodynamic feedback controls traffic flows in microfluidic networks.
    Belloul M; Engl W; Colin A; Panizza P; Ajdari A
    Phys Rev Lett; 2009 May; 102(19):194502. PubMed ID: 19518959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Droplet motion in microfluidic networks: Hydrodynamic interactions and pressure-drop measurements.
    Sessoms DA; Belloul M; Engl W; Roche M; Courbin L; Panizza P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016317. PubMed ID: 19658816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows.
    Mulligan MK; Rothstein JP
    Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Droplet microfluidics for postcolumn reactions in capillary electrophoresis.
    Abdul Keyon AS; Guijt RM; Bolch CJ; Breadmore MC
    Anal Chem; 2014 Dec; 86(23):11811-8. PubMed ID: 25310381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system.
    Shestopalov I; Tice JD; Ismagilov RF
    Lab Chip; 2004 Aug; 4(4):316-21. PubMed ID: 15269797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of droplet traffic in interconnected microfluidic ladder devices.
    Song K; Zhang L; Hu G
    Electrophoresis; 2012 Feb; 33(3):411-8. PubMed ID: 22228275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fast and efficient microfluidic system for highly selective one-to-one droplet fusion.
    Mazutis L; Baret JC; Griffiths AD
    Lab Chip; 2009 Sep; 9(18):2665-72. PubMed ID: 19704982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacing droplet microfluidics with matrix-assisted laser desorption/ionization mass spectrometry: label-free content analysis of single droplets.
    Küster SK; Fagerer SR; Verboket PE; Eyer K; Jefimovs K; Zenobi R; Dittrich PS
    Anal Chem; 2013 Feb; 85(3):1285-9. PubMed ID: 23289755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets.
    Chan EM; Alivisatos AP; Mathies RA
    J Am Chem Soc; 2005 Oct; 127(40):13854-61. PubMed ID: 16201806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fusion and sorting of two parallel trains of droplets using a railroad-like channel network and guiding tracks.
    Xu L; Lee H; Panchapakesan R; Oh KW
    Lab Chip; 2012 Oct; 12(20):3936-42. PubMed ID: 22814673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting.
    Tan YC; Fisher JS; Lee AI; Cristini V; Lee AP
    Lab Chip; 2004 Aug; 4(4):292-8. PubMed ID: 15269794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet fusion by alternating current (AC) field electrocoalescence in microchannels.
    Chabert M; Dorfman KD; Viovy JL
    Electrophoresis; 2005 Oct; 26(19):3706-15. PubMed ID: 16136526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic investigation of droplet generation at T-junctions.
    Schneider T; Burnham DR; VanOrden J; Chiu DT
    Lab Chip; 2011 Jun; 11(12):2055-9. PubMed ID: 21589961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Droplet-based microfluidics.
    Sharma S; Srisa-Art M; Scott S; Asthana A; Cass A
    Methods Mol Biol; 2013; 949():207-30. PubMed ID: 23329446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "V-junction": a novel structure for high-speed generation of bespoke droplet flows.
    Ding Y; Casadevall i Solvas X; deMello A
    Analyst; 2015 Jan; 140(2):414-21. PubMed ID: 25379571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Path selection rules for droplet trains in single-lane microfluidic networks.
    Amon A; Schmit A; Salkin L; Courbin L; Panizza P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013012. PubMed ID: 23944554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic resistance of single confined moving drops in rectangular microchannels.
    Vanapalli SA; Banpurkar AG; van den Ende D; Duits MH; Mugele F
    Lab Chip; 2009 Apr; 9(7):982-90. PubMed ID: 19294311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatic charging and control of droplets in microfluidic devices.
    Zhou H; Yao S
    Lab Chip; 2013 Mar; 13(5):962-9. PubMed ID: 23338121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.