These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 16384198)

  • 1. Phase coherence, visibility, and the superfluid-Mott-insulator transition on one-dimensional optical lattices.
    Sengupta P; Rigol M; Batrouni GG; Denteneer PJ; Scalettar RT
    Phys Rev Lett; 2005 Nov; 95(22):220402. PubMed ID: 16384198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase coherence of an atomic Mott insulator.
    Gerbier F; Widera A; Fölling S; Mandel O; Gericke T; Bloch I
    Phys Rev Lett; 2005 Jul; 95(5):050404. PubMed ID: 16090855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mott domains of bosons confined on optical lattices.
    Batrouni GG; Rousseau V; Scalettar RT; Rigol M; Muramatsu A; Denteneer PJ; Troyer M
    Phys Rev Lett; 2002 Sep; 89(11):117203. PubMed ID: 12225165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavily damped motion of one-dimensional Bose gases in an optical lattice.
    Danshita I; Clark CW
    Phys Rev Lett; 2009 Jan; 102(3):030407. PubMed ID: 19257333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superfluid to Mott-insulator transition in Bose-Hubbard models.
    Capello M; Becca F; Fabrizio M; Sorella S
    Phys Rev Lett; 2007 Aug; 99(5):056402. PubMed ID: 17930773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition from a two-dimensional superfluid to a one-dimensional Mott insulator.
    Bergkvist S; Rosengren A; Saers R; Lundh E; Rehn M; Kastberg A
    Phys Rev Lett; 2007 Sep; 99(11):110401. PubMed ID: 17930414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlocal Parity Order in the Two-Dimensional Mott Insulator.
    Fazzini S; Becca F; Montorsi A
    Phys Rev Lett; 2017 Apr; 118(15):157602. PubMed ID: 28452519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms.
    Greiner M; Mandel O; Esslinger T; Hänsch TW; Bloch I
    Nature; 2002 Jan; 415(6867):39-44. PubMed ID: 11780110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ observation of incompressible Mott-insulating domains in ultracold atomic gases.
    Gemelke N; Zhang X; Hung CL; Chin C
    Nature; 2009 Aug; 460(7258):995-8. PubMed ID: 19693080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the superfluid-to-Mott insulator transition at the single-atom level.
    Bakr WS; Peng A; Tai ME; Ma R; Simon J; Gillen JI; Fölling S; Pollet L; Greiner M
    Science; 2010 Jul; 329(5991):547-50. PubMed ID: 20558666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bragg scattering as a probe of atomic wave functions and quantum phase transitions in optical lattices.
    Miyake H; Siviloglou GA; Puentes G; Pritchard DE; Ketterle W; Weld DM
    Phys Rev Lett; 2011 Oct; 107(17):175302. PubMed ID: 22107532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Condensate fraction in a 2D Bose gas measured across the Mott-insulator transition.
    Spielman IB; Phillips WD; Porto JV
    Phys Rev Lett; 2008 Mar; 100(12):120402. PubMed ID: 18517841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phases of a two-dimensional bose gas in an optical lattice.
    Jiménez-García K; Compton RL; Lin YJ; Phillips WD; Porto JV; Spielman IB
    Phys Rev Lett; 2010 Sep; 105(11):110401. PubMed ID: 20867555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling coherence via tuning of the population imbalance in a bipartite optical lattice.
    Di Liberto M; Comparin T; Kock T; Ölschläger M; Hemmerich A; Smith CM
    Nat Commun; 2014 Dec; 5():5735. PubMed ID: 25501387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition from a strongly interacting 1d superfluid to a Mott insulator.
    Stöferle T; Moritz H; Schori C; Köhl M; Esslinger T
    Phys Rev Lett; 2004 Apr; 92(13):130403. PubMed ID: 15089587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superfluid and insulating phases of fermion mixtures in optical lattices.
    Iskin M; Sá de Melo CA
    Phys Rev Lett; 2007 Aug; 99(8):080403. PubMed ID: 17930934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Realizing the strongly correlated d-wave Mott-insulator state in a fermionic cold-atom optical lattice.
    Peterson MR; Zhang C; Tewari S; Sarma SD
    Phys Rev Lett; 2008 Oct; 101(15):150406. PubMed ID: 18999579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-order phase transitions in optical lattices with tunable three-body onsite interaction.
    Safavi-Naini A; von Stecher J; Capogrosso-Sansone B; Rittenhouse ST
    Phys Rev Lett; 2012 Sep; 109(13):135302. PubMed ID: 23030100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superfluid-insulator transition in a commensurate one-dimensional bosonic system with off-diagonal disorder.
    Balabanyan KG; Prokof'ev N; Svistunov B
    Phys Rev Lett; 2005 Jul; 95(5):055701. PubMed ID: 16090888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localized excitations at the Mott insulator-superfluid interfaces for confined Bose-Einstein condensates.
    Mariani E; Stern A
    Phys Rev Lett; 2005 Dec; 95(26):263001. PubMed ID: 16486347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.