These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 16384328)

  • 1. Electric-field-dependent charge-carrier velocity in semiconducting carbon nanotubes.
    Chen YF; Fuhrer MS
    Phys Rev Lett; 2005 Dec; 95(23):236803. PubMed ID: 16384328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ballistic carbon nanotube field-effect transistors.
    Javey A; Guo J; Wang Q; Lundstrom M; Dai H
    Nature; 2003 Aug; 424(6949):654-7. PubMed ID: 12904787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-field electron transport in semiconducting zigzag carbon nanotubes.
    Thiagarajan K; Lindefelt U
    Nanotechnology; 2012 Jul; 23(26):265703. PubMed ID: 22699562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge Transport in Mixed Semiconducting Carbon Nanotube Networks with Tailored Mixing Ratios.
    Brohmann M; Berger FJ; Matthiesen M; Schießl SP; Schneider S; Zaumseil J
    ACS Nano; 2019 Jun; 13(6):7323-7332. PubMed ID: 31184852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-wavelength electroluminescence from single-walled carbon nanotubes with high bias voltage.
    Hibino N; Suzuki S; Wakahara H; Kobayashi Y; Sato T; Maki H
    ACS Nano; 2011 Feb; 5(2):1215-22. PubMed ID: 21204568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights on charge transfer doping and intrinsic phonon line shape of carbon nanotubes by simple polymer adsorption.
    Shim M; Ozel T; Gaur A; Wang C
    J Am Chem Soc; 2006 Jun; 128(23):7522-30. PubMed ID: 16756307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced ambipolar charge injection with semiconducting polymer/carbon nanotube thin films for light-emitting transistors.
    Gwinner MC; Jakubka F; Gannott F; Sirringhaus H; Zaumseil J
    ACS Nano; 2012 Jan; 6(1):539-48. PubMed ID: 22142143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Why semiconducting single-walled carbon nanotubes are separated from their metallic counterparts.
    Lu J; Lai L; Luo G; Zhou J; Qin R; Wang D; Wang L; Mei WN; Li G; Gao Z; Nagase S; Maeda Y; Akasaka T; Yu D
    Small; 2007 Sep; 3(9):1566-76. PubMed ID: 17705313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-field electrical transport in single-wall carbon nanotubes.
    Yao Z; Kane CL; Dekker C
    Phys Rev Lett; 2000 Mar; 84(13):2941-4. PubMed ID: 11018981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple method of separating metallic and semiconducting single-walled carbon nanotubes based on molecular charge transfer.
    Voggu R; Rao KV; George SJ; Rao CN
    J Am Chem Soc; 2010 Apr; 132(16):5560-1. PubMed ID: 20361795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of field-effect mobility and contact resistance of transistors that use solution-processed single-walled carbon nanotubes.
    Cao Q; Han SJ; Tulevski GS; Franklin AD; Haensch W
    ACS Nano; 2012 Jul; 6(7):6471-7. PubMed ID: 22671996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-field quasiballistic transport in short carbon nanotubes.
    Javey A; Guo J; Paulsson M; Wang Q; Mann D; Lundstrom M; Dai H
    Phys Rev Lett; 2004 Mar; 92(10):106804. PubMed ID: 15089227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile and scalable route for highly efficient enrichment of semiconducting single-walled carbon nanotubes.
    Qiu H; Maeda Y; Akasaka T
    J Am Chem Soc; 2009 Nov; 131(45):16529-33. PubMed ID: 19860464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes.
    Rother M; Schießl SP; Zakharko Y; Gannott F; Zaumseil J
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5571-9. PubMed ID: 26867006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear transport and heat dissipation in metallic carbon nanotubes.
    Kuroda MA; Cangellaris A; Leburton JP
    Phys Rev Lett; 2005 Dec; 95(26):266803. PubMed ID: 16486384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative optical absorption of metallic and semiconducting single-walled carbon nanotubes.
    Huang H; Kajiura H; Maruyama R; Kadono K; Noda K
    J Phys Chem B; 2006 Mar; 110(10):4686-90. PubMed ID: 16526703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semiconducting single-walled carbon nanotubes sorting with a removable solubilizer based on dynamic supramolecular coordination chemistry.
    Toshimitsu F; Nakashima N
    Nat Commun; 2014 Oct; 5():5041. PubMed ID: 25277810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrically induced ambipolar spin vanishments in carbon nanotubes.
    Matsumoto D; Yanagi K; Takenobu T; Okada S; Marumoto K
    Sci Rep; 2015 Jul; 5():11859. PubMed ID: 26148487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of metallic conductivity of single-walled carbon nanotubes by cycloaddition reactions.
    Kanungo M; Lu H; Malliaras GG; Blanchet GB
    Science; 2009 Jan; 323(5911):234-7. PubMed ID: 19131624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.