These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 16384404)

  • 1. Ion-nanotube terahertz oscillator.
    Lu D; Li Y; Ravaioli U; Schulten K
    Phys Rev Lett; 2005 Dec; 95(24):246801. PubMed ID: 16384404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terahertz Spectroscopy of Individual Single-Walled Carbon Nanotubes as a Probe of Luttinger Liquid Physics.
    Chudow JD; Santavicca DF; Prober DE
    Nano Lett; 2016 Aug; 16(8):4909-16. PubMed ID: 27439013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular simulation study of temperature effect on ionic hydration in carbon nanotubes.
    Shao Q; Huang L; Zhou J; Lu L; Zhang L; Lu X; Jiang S; Gubbins KE; Shen W
    Phys Chem Chem Phys; 2008 Apr; 10(14):1896-906. PubMed ID: 18368182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical study of the structures and electronic properties of all-surface KI and CsI nanocrystals encapsulated in single walled carbon nanotubes.
    Bichoutskaia E; Pyper NC
    J Chem Phys; 2008 Oct; 129(15):154701. PubMed ID: 19045212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the dielectric barrier in narrow biological channels: a novel composite approach to modeling single-channel currents.
    Mamonov AB; Coalson RD; Nitzan A; Kurnikova MG
    Biophys J; 2003 Jun; 84(6):3646-61. PubMed ID: 12770873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local field effects in the energy transfer between a chromophore and a carbon nanotube: a single-nanocompound investigation.
    Roquelet C; Vialla F; Diederichs C; Roussignol P; Delalande C; Deleporte E; Lauret JS; Voisin C
    ACS Nano; 2012 Oct; 6(10):8796-802. PubMed ID: 23005601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competitive entry of sodium and potassium into nanoscale pores.
    Cannon JJ; Tang D; Hur N; Kim D
    J Phys Chem B; 2010 Sep; 114(38):12252-6. PubMed ID: 20825220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optically controlled dielectric properties of single-walled carbon nanotubes for terahertz wave applications.
    Smirnov S; Anoshkin IV; Demchenko P; Gomon D; Lioubtchenko DV; Khodzitsky M; Oberhammer J
    Nanoscale; 2018 Jul; 10(26):12291-12296. PubMed ID: 29926050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steered molecular dynamics studies of the potential of mean force of a Na+ or K+ ion in a cyclic peptide nanotube.
    Hwang H; Schatz GC; Ratner MA
    J Phys Chem B; 2006 Dec; 110(51):26448-60. PubMed ID: 17181305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of a carbon nanotube ultracapacitor.
    Orphanou A; Yamada T; Yang CY
    Nanotechnology; 2012 Mar; 23(9):095401. PubMed ID: 22322202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terahertz time-domain measurement of ballistic electron resonance in a single-walled carbon nanotube.
    Zhong Z; Gabor NM; Sharping JE; Gaeta AL; McEuen PL
    Nat Nanotechnol; 2008 Apr; 3(4):201-5. PubMed ID: 18654503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitons in semiconducting carbon nanotubes: diameter-dependent photoluminescence spectra.
    Kanemitsu Y
    Phys Chem Chem Phys; 2011 Sep; 13(33):14879-88. PubMed ID: 21735026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitation energy transfer from a fluorophore to single-walled carbon nanotubes.
    Swathi RS; Sebastian KL
    J Chem Phys; 2010 Mar; 132(10):104502. PubMed ID: 20232966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropic dielectric relaxation of the water confined in nanotubes for terahertz spectroscopy studied by molecular dynamics simulations.
    Qi W; Chen J; Yang J; Lei X; Song B; Fang H
    J Phys Chem B; 2013 Jul; 117(26):7967-71. PubMed ID: 23751101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-aligned T-gate high-purity semiconducting carbon nanotube RF transistors operated in quasi-ballistic transport and quantum capacitance regime.
    Che Y; Badmaev A; Jooyaie A; Wu T; Zhang J; Wang C; Galatsis K; Enaya HA; Zhou C
    ACS Nano; 2012 Aug; 6(8):6936-43. PubMed ID: 22768974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Terahertz Spectroscopy of Individual Carbon Nanotube Quantum Dots.
    Tsurugaya T; Yoshida K; Yajima F; Shimizu M; Homma Y; Hirakawa K
    Nano Lett; 2019 Jan; 19(1):242-246. PubMed ID: 30537841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts.
    Zhao B; Futaba DN; Yasuda S; Akoshima M; Yamada T; Hata K
    ACS Nano; 2009 Jan; 3(1):108-14. PubMed ID: 19206256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of ion permeation in a model channel: Free energy surface and dynamics of K+ ion transport in an anion-doped carbon nanotube.
    Sumikama T; Saito S; Ohmine I
    J Phys Chem B; 2006 Oct; 110(41):20671-7. PubMed ID: 17034258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic properties of nanotube-chromophore hybrids.
    Huang C; Wang RK; Wong BM; McGee DJ; LĂ©onard F; Kim YJ; Johnson KF; Arnold MS; Eriksson MA; Gopalan P
    ACS Nano; 2011 Oct; 5(10):7767-74. PubMed ID: 21919456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites.
    Banks CE; Davies TJ; Wildgoose GG; Compton RG
    Chem Commun (Camb); 2005 Feb; (7):829-41. PubMed ID: 15700054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.