These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 16384421)

  • 1. Direct experimental evidence of exciton-phonon bound states in carbon nanotubes.
    Plentz F; Ribeiro HB; Jorio A; Strano MS; Pimenta MA
    Phys Rev Lett; 2005 Dec; 95(24):247401. PubMed ID: 16384421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct observation of deep excitonic states in the photoluminescence spectra of single-walled carbon nanotubes.
    Kiowski O; Arnold K; Lebedkin S; Hennrich F; Kappes MM
    Phys Rev Lett; 2007 Dec; 99(23):237402. PubMed ID: 18233410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confirmation of K-momentum dark exciton vibronic sidebands using 13C-labeled, highly enriched (6,5) single-walled carbon nanotubes.
    Blackburn JL; Holt JM; Irurzun VM; Resasco DE; Rumbles G
    Nano Lett; 2012 Mar; 12(3):1398-403. PubMed ID: 22313425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of exciton-phonon coupling in the calculated optical absorption of carbon nanotubes.
    Perebeinos V; Tersoff J; Avouris P
    Phys Rev Lett; 2005 Jan; 94(2):027402. PubMed ID: 15698227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absorption spectroscopy of individual single-walled carbon nanotubes.
    Berciaud S; Cognet L; Poulin P; Weisman RB; Lounis B
    Nano Lett; 2007 May; 7(5):1203-7. PubMed ID: 17385932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unifying the low-temperature photoluminescence spectra of carbon nanotubes: the role of acoustic phonon confinement.
    Vialla F; Chassagneux Y; Ferreira R; Roquelet C; Diederichs C; Cassabois G; Roussignol P; Lauret JS; Voisin C
    Phys Rev Lett; 2014 Aug; 113(5):057402. PubMed ID: 25126935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy of K-momentum dark excitons in carbon nanotubes by optical spectroscopy.
    Torrens ON; Zheng M; Kikkawa JM
    Phys Rev Lett; 2008 Oct; 101(15):157401. PubMed ID: 18999637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polarized photoluminescence excitation spectroscopy of single-walled carbon nanotubes.
    Lefebvre J; Finnie P
    Phys Rev Lett; 2007 Apr; 98(16):167406. PubMed ID: 17501463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exciton energy transfer-assisted photoluminescence brightening from freestanding single-walled carbon nanotube bundles.
    Kato T; Hatakeyama R
    J Am Chem Soc; 2008 Jun; 130(25):8101-7. PubMed ID: 18512918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical properties of assembled single-walled carbon nanotube gels.
    Ostojic GN
    Chemphyschem; 2012 Jun; 13(8):2102-7. PubMed ID: 22461220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of exciton-phonon sideband in individual metallic single-walled carbon nanotubes.
    Zeng H; Zhao H; Zhang FC; Cui X
    Phys Rev Lett; 2009 Apr; 102(13):136406. PubMed ID: 19392381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. (n,m) Abundance evaluation of single-walled carbon nanotubes by fluorescence and absorption spectroscopy.
    Luo Z; Pfefferle LD; Haller GL; Papadimitrakopoulos F
    J Am Chem Soc; 2006 Dec; 128(48):15511-6. PubMed ID: 17132018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH-Sensitive photoinduced energy transfer from bacteriorhodopsin to single-walled carbon nanotubes in SWNT-bR hybrids.
    El Hadj K; Bertoncini P; Chauvet O
    ACS Nano; 2013 Oct; 7(10):8743-52. PubMed ID: 24011351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong Acoustic Phonon Localization in Copolymer-Wrapped Carbon Nanotubes.
    Sarpkaya I; Ahmadi ED; Shepard GD; Mistry KS; Blackburn JL; Strauf S
    ACS Nano; 2015 Jun; 9(6):6383-93. PubMed ID: 26039893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of negative and positive trions in the electrochemically carrier-doped single-walled carbon nanotubes.
    Park JS; Hirana Y; Mouri S; Miyauchi Y; Nakashima N; Matsuda K
    J Am Chem Soc; 2012 Sep; 134(35):14461-6. PubMed ID: 22870955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aqueous dispersion, surface thiolation, and direct self-assembly of carbon nanotubes on gold.
    Kocharova N; Aäritalo T; Leiro J; Kankare J; Lukkari J
    Langmuir; 2007 Mar; 23(6):3363-71. PubMed ID: 17291020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonant coherent phonon generation in single-walled carbon nanotubes through near-band-edge excitation.
    Lim YS; Ahn JG; Kim JH; Yee KJ; Joo T; Baik SH; Hároz EH; Booshehri LG; Kono J
    ACS Nano; 2010 Jun; 4(6):3222-6. PubMed ID: 20469843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single carbon nanotubes probed by photoluminescence excitation spectroscopy: the role of phonon-assisted transitions.
    Htoon H; O'Connell MJ; Doorn SK; Klimov VI
    Phys Rev Lett; 2005 Apr; 94(12):127403. PubMed ID: 15903961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear photoluminescence spectroscopy of carbon nanotubes with localized exciton states.
    Iwamura M; Akizuki N; Miyauchi Y; Mouri S; Shaver J; Gao Z; Cognet L; Lounis B; Matsuda K
    ACS Nano; 2014 Nov; 8(11):11254-60. PubMed ID: 25331628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.