These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 16384505)

  • 1. Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots.
    Seguin R; Schliwa A; Rodt S; Pötschke K; Pohl UW; Bimberg D
    Phys Rev Lett; 2005 Dec; 95(25):257402. PubMed ID: 16384505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory of strain tuning fine structure splitting in self-assembled InAs/GaAs quantum dots.
    Wang J; Guo GC; He L
    J Phys Condens Matter; 2014 Nov; 26(47):475301. PubMed ID: 25339242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots.
    Zieliński M
    J Phys Condens Matter; 2013 Nov; 25(46):465301. PubMed ID: 24129261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exciton Fine-Structure Splitting in Self-Assembled Lateral InAs/GaAs Quantum-Dot Molecular Structures.
    Fillipov S; Puttisong Y; Huang Y; Buyanova IA; Suraprapapich S; Tu CW; Chen WM
    ACS Nano; 2015 Jun; 9(6):5741-9. PubMed ID: 25965972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exciton polarization, fine-structure splitting, and the asymmetry of quantum dots under uniaxial stress.
    Gong M; Zhang W; Guo GC; He L
    Phys Rev Lett; 2011 Jun; 106(22):227401. PubMed ID: 21702632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-dependent properties of single InAs quantum dots grown in nanoimprint lithography patterned GaAs pits.
    Tommila J; Schramm A; Hakkarainen TV; Dumitrescu M; Guina M
    Nanotechnology; 2013 Jun; 24(23):235204. PubMed ID: 23676532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ground state lasing at 1.30 microm from InAs/GaAs quantum dot lasers grown by metal-organic chemical vapor deposition.
    Guimard D; Ishida M; Bordel D; Li L; Nishioka M; Tanaka Y; Ekawa M; Sudo H; Yamamoto T; Kondo H; Sugawara M; Arakawa Y
    Nanotechnology; 2010 Mar; 21(10):105604. PubMed ID: 20160334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical control of the exciton fine structure of a quantum dot molecule.
    Sköld N; Boyer de la Giroday A; Bennett AJ; Farrer I; Ritchie DA; Shields AJ
    Phys Rev Lett; 2013 Jan; 110(1):016804. PubMed ID: 23383823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards Scalable Entangled Photon Sources with Self-Assembled InAs/GaAs Quantum Dots.
    Wang J; Gong M; Guo GC; He L
    Phys Rev Lett; 2015 Aug; 115(6):067401. PubMed ID: 26296130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of InAs Quantum Dots on Germanium Substrate Using Metal Organic Chemical Vapor Deposition Technique.
    Dhawan T; Tyagi R; Bag R; Singh M; Mohan P; Haldar T; Murlidharan R; Tandon R
    Nanoscale Res Lett; 2009 Sep; 5(1):31-7. PubMed ID: 20651909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Narrow emission linewidths of positioned InAs quantum dots grown on pre-patterned GaAs(100) substrates.
    Skiba-Szymanska J; Jamil A; Farrer I; Ward MB; Nicoll CA; Ellis DJ; Griffiths JP; Anderson D; Jones GA; Ritchie DA; Shields AJ
    Nanotechnology; 2011 Feb; 22(6):065302. PubMed ID: 21212488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lattice distortion inducing exciton splitting and coherent quantum beating in CsPbI
    Han Y; Liang W; Lin X; Li Y; Sun F; Zhang F; Sercel PC; Wu K
    Nat Mater; 2022 Nov; 21(11):1282-1289. PubMed ID: 36075966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly reduced fine-structure splitting in InAs/InP quantum dots offering an efficient on-demand entangled 1.55-microm photon emitter.
    He L; Gong M; Li CF; Guo GC; Zunger A
    Phys Rev Lett; 2008 Oct; 101(15):157405. PubMed ID: 18999641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman coherence beats from entangled polarization eigenstates in InAs quantum dots.
    Lenihan AS; Gurudev Dutt MV; Steel DG; Ghosh S; Bhattacharya PK
    Phys Rev Lett; 2002 Jun; 88(22):223601. PubMed ID: 12059418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved photoluminescence efficiency of patterned quantum dots incorporating a dots-in-the-well structure.
    Wong PS; Liang BL; Dorogan VG; Albrecht AR; Tatebayashi J; He X; Nuntawong N; Mazur YI; Salamo GJ; Brueck SR; Huffaker DL
    Nanotechnology; 2008 Oct; 19(43):435710. PubMed ID: 21832714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitonic optical properties of wurtzite ZnS quantum dots under pressure.
    Zeng Z; Garoufalis CS; Baskoutas S; Bester G
    J Chem Phys; 2015 Mar; 142(11):114305. PubMed ID: 25796247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Four-wave mixing dynamics of excitons in InGaAs self-assembled quantum dots.
    Borri P; Langbein W
    J Phys Condens Matter; 2007 Jul; 19(29):295201. PubMed ID: 21483053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. InAs quantum dot arrays decorating the facets of GaAs nanowires.
    Uccelli E; Arbiol J; Morante JR; Fontcuberta i Morral A
    ACS Nano; 2010 Oct; 4(10):5985-93. PubMed ID: 20839804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density dependent composition of InAs quantum dots extracted from grazing incidence x-ray diffraction measurements.
    Sharma M; Sanyal MK; Farrer I; Ritchie DA; Dey AB; Bhattacharyya A; Seeck OH; Skiba-Szymanska J; Felle M; Bennett AJ; Shields AJ
    Sci Rep; 2015 Oct; 5():15732. PubMed ID: 26506865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine structure of excitons in InAs/GaAs coupled auantum dots: a sensitive test of electronic coupling.
    Ortner G; Bayer M; Larionov A; Timofeev VB; Forchel A; Lyanda-Geller YB; Reinecke TL; Hawrylak P; Fafard S; Wasilewski Z
    Phys Rev Lett; 2003 Feb; 90(8):086404. PubMed ID: 12633447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.