These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 16384706)

  • 1. Cyclodextrin retinylidene: a biomimetic kinetic trap model for rhodopsin.
    Kpegba K; Murtha M; Nesnas N
    Bioorg Med Chem Lett; 2006 Mar; 16(6):1523-6. PubMed ID: 16384706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhodopsin regeneration is accelerated via noncovalent 11-cis retinal-opsin complex--a role of retinal binding pocket of opsin.
    Matsumoto H; Yoshizawa T
    Photochem Photobiol; 2008; 84(4):985-9. PubMed ID: 18399914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Substituted cyclodextrins: an example of biomimetic catalyzers].
    Masurier N; Lafont O; Estour F
    Ann Pharm Fr; 2007 Mar; 65(2):126-33. PubMed ID: 17404546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural changes in the Schiff base region of squid rhodopsin upon photoisomerization studied by low-temperature FTIR spectroscopy.
    Ota T; Furutani Y; Terakita A; Shichida Y; Kandori H
    Biochemistry; 2006 Mar; 45(9):2845-51. PubMed ID: 16503639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opsin Effect on the Electronic Structure of the Retinylidene Chromophore in Rhodopsin.
    Sproviero EM
    J Chem Theory Comput; 2015 Mar; 11(3):1206-19. PubMed ID: 26579769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinal Schiff base chromophore in the surfactant solubilised water pools in CCl4.
    Singh AK; Aruna RV
    Biochim Biophys Acta; 1995 Oct; 1245(2):167-72. PubMed ID: 7492573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-induced bonding perturbation of the rhodopsin chromophore detected by double-quantum solid-state NMR.
    Carravetta M; Zhao X; Johannessen OG; Lai WC; Verhoeven MA; Bovee-Geurts PH; Verdegem PJ; Kiihne S; Luthman H; de Groot HJ; deGrip WJ; Lugtenburg J; Levitt MH
    J Am Chem Soc; 2004 Mar; 126(12):3948-53. PubMed ID: 15038749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical kinetic analysis of thermal decay of rhodopsin reveals unusual energetics of thermal isomerization and hydrolysis of Schiff base.
    Liu J; Liu MY; Fu L; Zhu GA; Yan ECY
    J Biol Chem; 2011 Nov; 286(44):38408-38416. PubMed ID: 21921035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulating rhodopsin receptor activation by altering the pKa of the retinal Schiff base.
    Vogel R; Siebert F; Yan EC; Sakmar TP; Hirshfeld A; Sheves M
    J Am Chem Soc; 2006 Aug; 128(32):10503-12. PubMed ID: 16895417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remarkable supramolecular catalysis of glycoside hydrolysis by a cyclodextrin cyanohydrin.
    Ortega-Caballero F; Rousseau C; Christensen B; Petersen TE; Bols M
    J Am Chem Soc; 2005 Mar; 127(10):3238-9. PubMed ID: 15755115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinylidene Schiff bases in alkylammonium carboxylate reversed micelles.
    Singh AK; Sandorfy C; Fendler JH
    Biochim Biophys Acta; 1990 Oct; 1036(1):34-40. PubMed ID: 2171658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient promotion of phosphate diester cleavage by a face-to-face cyclodextrin dimer without metal.
    Hu P; Liu GF; Ji LN; Mao ZW
    Chem Commun (Camb); 2012 Jun; 48(44):5515-7. PubMed ID: 22538257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ester hydrolysis by a cyclodextrin dimer catalyst with a metallophenanthroline linking group.
    Zhou YH; Zhao M; Mao ZW; Ji LN
    Chemistry; 2008; 14(24):7193-201. PubMed ID: 18601233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin.
    Ikeda D; Furutani Y; Kandori H
    Biochemistry; 2007 May; 46(18):5365-73. PubMed ID: 17428036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring the conformational changes of photoactivated rhodopsin from microseconds to seconds by transient fluorescence spectroscopy.
    Hoersch D; Otto H; Wallat I; Heyn MP
    Biochemistry; 2008 Nov; 47(44):11518-27. PubMed ID: 18847221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights in cyclodextrin: surfactant mixed systems from the use of neutral and anionic cyclodextrin derivatives.
    García-Río L; Méndez M; Paleo MR; Sardina FJ
    J Phys Chem B; 2007 Nov; 111(44):12756-64. PubMed ID: 17939704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The kinetics of alkaline hydrolysis of the new potential antiarrhythmic, substance H + B, in the presence of beta-cyclodextrin.
    Stankovicová M; Králová K; Cizmárik J
    Pharmazie; 1995 Oct; 50(10):705. PubMed ID: 7501695
    [No Abstract]   [Full Text] [Related]  

  • 18. Activity switches of rhodopsin.
    Ritter E; Elgeti M; Bartl FJ
    Photochem Photobiol; 2008; 84(4):911-20. PubMed ID: 18422873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein design: reengineering cellular retinoic acid binding protein II into a rhodopsin protein mimic.
    Vasileiou C; Vaezeslami S; Crist RM; Rabago-Smith M; Geiger JH; Borhan B
    J Am Chem Soc; 2007 May; 129(19):6140-8. PubMed ID: 17447762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversal of regioselectivity and enhancement of rates of nitrile oxide cycloadditions through transient attachment of dipolarophiles to cyclodextrins.
    Barr L; Lincoln SF; Easton CJ
    Chemistry; 2006 Nov; 12(33):8571-80. PubMed ID: 16981207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.