BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 16385030)

  • 1. Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum.
    Letek M; Valbuena N; Ramos A; Ordóñez E; Gil JA; Mateos LM
    J Bacteriol; 2006 Jan; 188(2):409-23. PubMed ID: 16385030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and molecular genetic characterization of the Escherichia coli gntR, gntK, and gntU genes of GntI, the main system for gluconate metabolism.
    Tong S; Porco A; Isturiz T; Conway T
    J Bacteriol; 1996 Jun; 178(11):3260-9. PubMed ID: 8655507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gluconate as suitable potential reduction supplier in Corynebacterium glutamicum: cloning and expression of gntP and gntK in Escherichia coli.
    Porco A; Gamero EE; Mylonás E; Istúriz T
    Biol Res; 2008; 41(3):349-58. PubMed ID: 19399347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The gluconate operon gnt of Bacillus subtilis encodes its own transcriptional negative regulator.
    Fujita Y; Fujita T
    Proc Natl Acad Sci U S A; 1987 Jul; 84(13):4524-8. PubMed ID: 3037520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organization and transcription of the gluconate operon, gnt, of Bacillus subtilis.
    Fujita Y; Fujita T; Miwa Y; Nihashi J; Aratani Y
    J Biol Chem; 1986 Oct; 261(29):13744-53. PubMed ID: 3020045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene organization and transcriptional regulation of the gntRKU operon involved in gluconate uptake and catabolism of Escherichia coli.
    Izu H; Adachi O; Yamada M
    J Mol Biol; 1997 Apr; 267(4):778-93. PubMed ID: 9135111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The GlxR regulon of the amino acid producer Corynebacterium glutamicum: in silico and in vitro detection of DNA binding sites of a global transcription regulator.
    Kohl TA; Baumbach J; Jungwirth B; Pühler A; Tauch A
    J Biotechnol; 2008 Jul; 135(4):340-50. PubMed ID: 18573287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the gluconate (gnt) operon of Bacillus subtilis.
    Reizer A; Deutscher J; Saier MH; Reizer J
    Mol Microbiol; 1991 May; 5(5):1081-9. PubMed ID: 1659648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2.
    Frunzke J; Engels V; Hasenbein S; Gätgens C; Bott M
    Mol Microbiol; 2008 Jan; 67(2):305-22. PubMed ID: 18047570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular genetic characterization of the Escherichia coli gntT gene of GntI, the main system for gluconate metabolism.
    Porco A; Peekhaus N; Bausch C; Tong S; Isturiz T; Conway T
    J Bacteriol; 1997 Mar; 179(5):1584-90. PubMed ID: 9045817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The GlxR regulon of the amino acid producer Corynebacterium glutamicum: Detection of the corynebacterial core regulon and integration into the transcriptional regulatory network model.
    Kohl TA; Tauch A
    J Biotechnol; 2009 Sep; 143(4):239-46. PubMed ID: 19665500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for posttranscriptional regulation of synthesis of the Bacillus subtilis Gnt repressor.
    Fujita Y; Fujita T; Miwa Y
    FEBS Lett; 1990 Jul; 267(1):71-4. PubMed ID: 2163901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of the glxR deletion mutant of Corynebacterium glutamicum ATCC 13032: involvement of GlxR in acetate metabolism and carbon catabolite repression.
    Park SY; Moon MW; Subhadra B; Lee JK
    FEMS Microbiol Lett; 2010 Mar; 304(2):107-15. PubMed ID: 20377641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotide sequence and features of the Bacillus licheniformis gnt operon.
    Yoshida K; Seki S; Fujita Y
    DNA Res; 1994; 1(4):157-62. PubMed ID: 8535972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacillus subtilis GntR regulation modified to devise artificial transient induction systems.
    Majidian P; Kuse J; Tanaka K; Najafi H; Zeinalabedini M; Takenaka S; Yoshida KI
    J Gen Appl Microbiol; 2017 Jan; 62(6):277-285. PubMed ID: 27829583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positive and negative transcriptional regulation of the Escherichia coli gluconate regulon gene gntT by GntR and the cyclic AMP (cAMP)-cAMP receptor protein complex.
    Peekhaus N; Conway T
    J Bacteriol; 1998 Apr; 180(7):1777-85. PubMed ID: 9537375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the nitrate reductase operon narKGHJI by the cAMP-dependent regulator GlxR in Corynebacterium glutamicum.
    Nishimura T; Teramoto H; Toyoda K; Inui M; Yukawa H
    Microbiology (Reading); 2011 Jan; 157(Pt 1):21-28. PubMed ID: 20864477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the gntT gene encoding a high-affinity gluconate permease in Escherichia coli.
    Izu H; Kawai T; Yamada Y; Aoshima H; Adachi O; Yamada M
    Gene; 1997 Oct; 199(1-2):203-10. PubMed ID: 9358057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the cis sequence involved in catabolite repression of the Bacillus subtilis gnt operon; implication of a consensus sequence in catabolite repression in the genus Bacillus.
    Miwa Y; Fujita Y
    Nucleic Acids Res; 1990 Dec; 18(23):7049-53. PubMed ID: 2124676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The gntP gene of Escherichia coli involved in gluconate uptake.
    Klemm P; Tong S; Nielsen H; Conway T
    J Bacteriol; 1996 Jan; 178(1):61-7. PubMed ID: 8550444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.