These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 16385054)

  • 21. Genetic and Physiological Probing of Cytoplasmic Bypasses for the Energy-Converting Methyltransferase Mtr in Methanosarcina acetivorans.
    Schöne C; Poehlein A; Rother M
    Appl Environ Microbiol; 2023 Jul; 89(7):e0216122. PubMed ID: 37347168
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of 3-nitrooxypropanol, a potent methane inhibitor, on ruminal microbial gene expression profiles in dairy cows.
    Pitta DW; Indugu N; Melgar A; Hristov A; Challa K; Vecchiarelli B; Hennessy M; Narayan K; Duval S; Kindermann M; Walker N
    Microbiome; 2022 Sep; 10(1):146. PubMed ID: 36100950
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sodium ions and an energized membrane required by Methanosarcina barkeri for the oxidation of methanol to the level of formaldehyde.
    Blaut M; Müller V; Fiebig K; Gottschalk G
    J Bacteriol; 1985 Oct; 164(1):95-101. PubMed ID: 3930472
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of molybdate and tungstate on the biosynthesis of CO dehydrogenase and the molybdopterin cytosine-dinucleotide-type of molybdenum cofactor in Hydrogenophaga pseudoflava.
    Hänzelmann P; Meyer O
    Eur J Biochem; 1998 Aug; 255(3):755-65. PubMed ID: 9738918
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in Methanosarcina barkeri.
    Blaut M; Gottschalk G
    Eur J Biochem; 1984 May; 141(1):217-22. PubMed ID: 6327309
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The tungsten formylmethanofuran dehydrogenase from Methanobacterium thermoautotrophicum contains sequence motifs characteristic for enzymes containing molybdopterin dinucleotide.
    Hochheimer A; Schmitz RA; Thauer RK; Hedderich R
    Eur J Biochem; 1995 Dec; 234(3):910-20. PubMed ID: 8575452
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Methanosarcina mutant unable to produce methane or assimilate carbon from acetate.
    Smith MR; Lequerica JL
    J Bacteriol; 1985 Nov; 164(2):618-25. PubMed ID: 3840474
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acetate catabolism by Methanosarcina barkeri: evidence for involvement of carbon monoxide dehydrogenase, methyl coenzyme M, and methylreductase.
    Krzycki JA; Lehman LJ; Zeikus JG
    J Bacteriol; 1985 Sep; 163(3):1000-6. PubMed ID: 3928595
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enzymology of one-carbon metabolism in methanogenic pathways.
    Ferry JG
    FEMS Microbiol Rev; 1999 Jan; 23(1):13-38. PubMed ID: 10077852
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative proteomic and microarray analysis of the archaeon Methanosarcina acetivorans grown with acetate versus methanol.
    Li L; Li Q; Rohlin L; Kim U; Salmon K; Rejtar T; Gunsalus RP; Karger BL; Ferry JG
    J Proteome Res; 2007 Feb; 6(2):759-71. PubMed ID: 17269732
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sodium ion translocation and ATP synthesis in methanogens.
    Schlegel K; Müller V
    Methods Enzymol; 2011; 494():233-55. PubMed ID: 21402218
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Function and regulation of isoforms of carbon monoxide dehydrogenase/acetyl coenzyme A synthase in Methanosarcina acetivorans.
    Matschiavelli N; Oelgeschläger E; Cocchiararo B; Finke J; Rother M
    J Bacteriol; 2012 Oct; 194(19):5377-87. PubMed ID: 22865842
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolism of methanogens.
    Blaut M
    Antonie Van Leeuwenhoek; 1994; 66(1-3):187-208. PubMed ID: 7747931
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nutritional and biochemical characterization of Methanospirillum hungatii.
    Ferry JG; Wolfe RS
    Appl Environ Microbiol; 1977 Oct; 34(4):371-6. PubMed ID: 411420
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen.
    Miller TL; Wolin MJ
    Arch Microbiol; 1985 Mar; 141(2):116-22. PubMed ID: 3994486
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activity of the molybdopterin-containing xanthine dehydrogenase of Rhodobacter capsulatus can be restored by high molybdenum concentrations in a moeA mutant defective in molybdenum cofactor biosynthesis.
    Leimkühler S; Angermüller S; Schwarz G; Mendel RR; Klipp W
    J Bacteriol; 1999 Oct; 181(19):5930-9. PubMed ID: 10498704
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coenzyme M derivatives and their effects on methane formation from carbon dioxide and methanol by cell extracts of Methanosarcina barkeri.
    Hutten TJ; De Jong MH; Peeters BP; van der Drift C; Vogels GD
    J Bacteriol; 1981 Jan; 145(1):27-34. PubMed ID: 6780512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extensive Inter-Domain Lateral Gene Transfer in the Evolution of the Human Commensal Methanosphaera stadtmanae.
    Lurie-Weinberger MN; Peeri M; Tuller T; Gophna U
    Front Genet; 2012; 3():182. PubMed ID: 23049536
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for the involvement of two heterodisulfide reductases in the energy-conserving system of Methanomassiliicoccus luminyensis.
    Kröninger L; Berger S; Welte C; Deppenmeier U
    FEBS J; 2016 Feb; 283(3):472-83. PubMed ID: 26573766
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of unitrophic and mixotrophic substrate metabolism by acetate-adapted strain of Methanosarcina barkeri.
    Krzycki JA; Wolkin RH; Zeikus JG
    J Bacteriol; 1982 Jan; 149(1):247-54. PubMed ID: 6798021
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.