These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 16385399)

  • 1. Alpha-L-arabinofuranosidases: the potential applications in biotechnology.
    Numan MT; Bhosle NB
    J Ind Microbiol Biotechnol; 2006 Apr; 33(4):247-60. PubMed ID: 16385399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GH62 arabinofuranosidases: Structure, function and applications.
    Wilkens C; Andersen S; Dumon C; Berrin JG; Svensson B
    Biotechnol Adv; 2017 Nov; 35(6):792-804. PubMed ID: 28669588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic degradation of (ligno)cellulose.
    Bornscheuer U; Buchholz K; Seibel J
    Angew Chem Int Ed Engl; 2014 Oct; 53(41):10876-93. PubMed ID: 25136976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization and solution properties of enzymatically tailored arabinoxylans.
    Pitkänen L; Tuomainen P; Virkki L; Tenkanen M
    Int J Biol Macromol; 2011 Dec; 49(5):963-9. PubMed ID: 21889531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Prospects for practical application of substrate-binding modules of glycosyl hydrolases (A review)].
    Volkov IIu; Lunina NA; Velikodvorskaia GA
    Prikl Biokhim Mikrobiol; 2004; 40(5):499-504. PubMed ID: 15553778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specificity mapping of cellulolytic enzymes: classification into families of structurally related proteins confirmed by biochemical analysis.
    Claeyssens M; Henrissat B
    Protein Sci; 1992 Oct; 1(10):1293-7. PubMed ID: 1303748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the family GH54 alpha-L-arabinofuranosidases in Penicillium funiculosum, including a novel protein bearing a cellulose-binding domain.
    Guais O; Tourrasse O; Dourdoigne M; Parrou JL; Francois JM
    Appl Microbiol Biotechnol; 2010 Jul; 87(3):1007-21. PubMed ID: 20333513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cellulosome--a treasure-trove for biotechnology.
    Bayer EA; Morag E; Lamed R
    Trends Biotechnol; 1994 Sep; 12(9):379-86. PubMed ID: 7765191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of carbohydrate arrays coupled with mass spectrometry to detect activity of plant-polysaccharide degradative enzymes from the fungus Aspergillus niger.
    van Munster JM; Thomas B; Riese M; Davis AL; Gray CJ; Archer DB; Flitsch SL
    Sci Rep; 2017 Feb; 7():43117. PubMed ID: 28220903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bringing functions together with fusion enzymes--from nature's inventions to biotechnological applications.
    Elleuche S
    Appl Microbiol Biotechnol; 2015 Feb; 99(4):1545-56. PubMed ID: 25535094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of transgenic glycoside hydrolases expressed in plants: T. reesei CBH I and A. cellulolyticus EI.
    Brunecky R; Baker JO; Wei H; Taylor LE; Himmel ME; Decker SR
    Methods Mol Biol; 2012; 908():197-211. PubMed ID: 22843401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties and biotechnological applications of natural and engineered haloalkane dehalogenases.
    Nagata Y; Ohtsubo Y; Tsuda M
    Appl Microbiol Biotechnol; 2015 Dec; 99(23):9865-81. PubMed ID: 26373728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in engineering proteins for biocatalysis.
    Li Y; Cirino PC
    Biotechnol Bioeng; 2014 Jul; 111(7):1273-87. PubMed ID: 24802032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The xylanolytic enzyme system from the genus Penicillium.
    Chávez R; Bull P; Eyzaguirre J
    J Biotechnol; 2006 Jun; 123(4):413-33. PubMed ID: 16569456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial biodegradation and bioconversion of industrial lignocellulosic streams.
    Mathews SL; Pawlak J; Grunden AM
    Appl Microbiol Biotechnol; 2015 Apr; 99(7):2939-54. PubMed ID: 25722022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant biotechnology for lignocellulosic biofuel production.
    Li Q; Song J; Peng S; Wang JP; Qu GZ; Sederoff RR; Chiang VL
    Plant Biotechnol J; 2014 Dec; 12(9):1174-92. PubMed ID: 25330253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The features that distinguish lichenases from other polysaccharide-hydrolyzing enzymes and the relevance of lichenases for biotechnological applications.
    Goldenkova-Pavlova IV; Tyurin AА; Mustafaev ON
    Appl Microbiol Biotechnol; 2018 May; 102(9):3951-3965. PubMed ID: 29549448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional analysis of glycoside hydrolase family 8 xylanases shows narrow but distinct substrate specificities and biotechnological potential.
    Pollet A; Schoepe J; Dornez E; Strelkov SV; Delcour JA; Courtin CM
    Appl Microbiol Biotechnol; 2010 Aug; 87(6):2125-35. PubMed ID: 20552357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotechnological and Biochemical Utilization of Lignin.
    Rais D; Zibek S
    Adv Biochem Eng Biotechnol; 2019; 166():469-518. PubMed ID: 28540404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant glycosyl hydrolases and biofuels: a natural marriage.
    Lopez-Casado G; Urbanowicz BR; Damasceno CM; Rose JK
    Curr Opin Plant Biol; 2008 Jun; 11(3):329-37. PubMed ID: 18396092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.