BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 16385628)

  • 1. Mechanism of pathogen-specific TLR4 activation in the mucosa: fimbriae, recognition receptors and adaptor protein selection.
    Fischer H; Yamamoto M; Akira S; Beutler B; Svanborg C
    Eur J Immunol; 2006 Feb; 36(2):267-77. PubMed ID: 16385628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathogen-specific TLR signaling in mucosa: mutual contribution of microbial TLR agonists and virulence factors.
    Sirard JC; Bayardo M; Didierlaurent A
    Eur J Immunol; 2006 Feb; 36(2):260-3. PubMed ID: 16453385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viral inhibitory peptide of TLR4, a peptide derived from vaccinia protein A46, specifically inhibits TLR4 by directly targeting MyD88 adaptor-like and TRIF-related adaptor molecule.
    Lysakova-Devine T; Keogh B; Harrington B; Nagpal K; Halle A; Golenbock DT; Monie T; Bowie AG
    J Immunol; 2010 Oct; 185(7):4261-71. PubMed ID: 20802145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a TLR4- and TRIF-dependent activation program of dendritic cells.
    Weighardt H; Jusek G; Mages J; Lang R; Hoebe K; Beutler B; Holzmann B
    Eur J Immunol; 2004 Feb; 34(2):558-64. PubMed ID: 14768061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ceramide as a TLR4 agonist; a putative signalling intermediate between sphingolipid receptors for microbial ligands and TLR4.
    Fischer H; Ellström P; Ekström K; Gustafsson L; Gustafsson M; Svanborg C
    Cell Microbiol; 2007 May; 9(5):1239-51. PubMed ID: 17223929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling.
    Hoebe K; Du X; Georgel P; Janssen E; Tabeta K; Kim SO; Goode J; Lin P; Mann N; Mudd S; Crozat K; Sovath S; Han J; Beutler B
    Nature; 2003 Aug; 424(6950):743-8. PubMed ID: 12872135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TLR3-mediated IFN-β gene induction is negatively regulated by the TLR adaptor MyD88 adaptor-like.
    Siednienko J; Halle A; Nagpal K; Golenbock DT; Miggin SM
    Eur J Immunol; 2010 Nov; 40(11):3150-60. PubMed ID: 20957750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bovine TLR2 and TLR4 properly transduce signals from Staphylococcus aureus and E. coli, but S. aureus fails to both activate NF-kappaB in mammary epithelial cells and to quickly induce TNFalpha and interleukin-8 (CXCL8) expression in the udder.
    Yang W; Zerbe H; Petzl W; Brunner RM; Günther J; Draing C; von Aulock S; Schuberth HJ; Seyfert HM
    Mol Immunol; 2008 Mar; 45(5):1385-97. PubMed ID: 17936907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial lipopolysaccharide induces increased expression of toll-like receptor (TLR) 4 and downstream TLR signaling molecules in bovine mammary epithelial cells.
    Ibeagha-Awemu EM; Lee JW; Ibeagha AE; Bannerman DD; Paape MJ; Zhao X
    Vet Res; 2008; 39(2):11. PubMed ID: 18096120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ASC is essential for LPS-induced activation of procaspase-1 independently of TLR-associated signal adaptor molecules.
    Yamamoto M; Yaginuma K; Tsutsui H; Sagara J; Guan X; Seki E; Yasuda K; Yamamoto M; Akira S; Nakanishi K; Noda T; Taniguchi S
    Genes Cells; 2004 Nov; 9(11):1055-67. PubMed ID: 15507117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of lipopolysaccharide-inducible genes by MyD88 and Toll/IL-1 domain containing adaptor inducing IFN-beta.
    Hirotani T; Yamamoto M; Kumagai Y; Uematsu S; Kawase I; Takeuchi O; Akira S
    Biochem Biophys Res Commun; 2005 Mar; 328(2):383-92. PubMed ID: 15694359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins.
    Cirl C; Wieser A; Yadav M; Duerr S; Schubert S; Fischer H; Stappert D; Wantia N; Rodriguez N; Wagner H; Svanborg C; Miethke T
    Nat Med; 2008 Apr; 14(4):399-406. PubMed ID: 18327267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signalling adaptors used by Toll-like receptors: an update.
    Kenny EF; O'Neill LA
    Cytokine; 2008 Sep; 43(3):342-9. PubMed ID: 18706831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toll-like receptor 4 agonists adsorbed to aluminium hydroxide adjuvant attenuate ovalbumin-specific allergic airway disease: role of MyD88 adaptor molecule and interleukin-12/interferon-gamma axis.
    Bortolatto J; Borducchi E; Rodriguez D; Keller AC; Faquim-Mauro E; Bortoluci KR; Mucida D; Gomes E; Christ A; Schnyder-Candrian S; Schnyder B; Ryffel B; Russo M
    Clin Exp Allergy; 2008 Oct; 38(10):1668-79. PubMed ID: 18631348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recipient Toll-like receptors contribute to chronic graft dysfunction by both MyD88- and TRIF-dependent signaling.
    Wang S; Schmaderer C; Kiss E; Schmidt C; Bonrouhi M; Porubsky S; Gretz N; Schaefer L; Kirschning CJ; Popovic ZV; Gröne HJ
    Dis Model Mech; 2010; 3(1-2):92-103. PubMed ID: 20038715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis.
    Fukata M; Michelsen KS; Eri R; Thomas LS; Hu B; Lukasek K; Nast CC; Lechago J; Xu R; Naiki Y; Soliman A; Arditi M; Abreu MT
    Am J Physiol Gastrointest Liver Physiol; 2005 May; 288(5):G1055-65. PubMed ID: 15826931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Troll in Toll: Mal and Tram as bridges for TLR2 and TLR4 signaling.
    Sheedy FJ; O'Neill LA
    J Leukoc Biol; 2007 Aug; 82(2):196-203. PubMed ID: 17449723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling.
    O'Neill LA; Bowie AG
    Nat Rev Immunol; 2007 May; 7(5):353-64. PubMed ID: 17457343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6.
    Häcker H; Redecke V; Blagoev B; Kratchmarova I; Hsu LC; Wang GG; Kamps MP; Raz E; Wagner H; Häcker G; Mann M; Karin M
    Nature; 2006 Jan; 439(7073):204-7. PubMed ID: 16306937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of the TIR domain-containing adaptors in humans: swinging between constraint and adaptation.
    Fornarino S; Laval G; Barreiro LB; Manry J; Vasseur E; Quintana-Murci L
    Mol Biol Evol; 2011 Nov; 28(11):3087-97. PubMed ID: 21659570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.