These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 16386162)

  • 1. Guest editorial: promoting optimal function after spinal cord injury.
    Field-Fote E
    J Neurol Phys Ther; 2005 Jun; 29(2):54. PubMed ID: 16386162
    [No Abstract]   [Full Text] [Related]  

  • 2. From animal models to humans: strategies for promoting CNS axon regeneration and recovery of limb function after spinal cord injury.
    Moon L; Bunge MB
    J Neurol Phys Ther; 2005 Jun; 29(2):55-69. PubMed ID: 16386163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An appraisal of ongoing experimental procedures in human spinal cord injury.
    Amador MJ; Guest JD
    J Neurol Phys Ther; 2005 Jun; 29(2):70-86. PubMed ID: 16386164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regeneration of descending axon tracts after spinal cord injury.
    Deumens R; Koopmans GC; Joosten EA
    Prog Neurobiol; 2005; 77(1-2):57-89. PubMed ID: 16271433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomaterials and Gene Manipulation in Stem Cell-Based Therapies for Spinal Cord Injury.
    Wang J; Zou W; Ma J; Liu J
    Stem Cells Dev; 2019 Feb; 28(4):239-257. PubMed ID: 30489226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New serum-derived albumin scaffold seeded with adipose-derived stem cells and olfactory ensheathing cells used to treat spinal cord injured rats.
    Ferrero-Gutierrez A; Menendez-Menendez Y; Alvarez-Viejo M; Meana A; Otero J
    Histol Histopathol; 2013 Jan; 28(1):89-100. PubMed ID: 23233062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restoring function after spinal cord injury: promoting spontaneous regeneration with stem cells and activity-based therapies.
    Belegu V; Oudega M; Gary DS; McDonald JW
    Neurosurg Clin N Am; 2007 Jan; 18(1):143-68, xi. PubMed ID: 17244561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stem cell biology and its therapeutic applications in the setting of spinal cord injury.
    Bambakidis NC; Butler J; Horn EM; Wang X; Preul MC; Theodore N; Spetzler RF; Sonntag VK
    Neurosurg Focus; 2008; 24(3-4):E20. PubMed ID: 18341397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stem cells for the treatment of spinal cord injury.
    Coutts M; Keirstead HS
    Exp Neurol; 2008 Feb; 209(2):368-77. PubMed ID: 17950280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transplantation of adult rat spinal cord stem/progenitor cells for spinal cord injury.
    Parr AM; Kulbatski I; Tator CH
    J Neurotrauma; 2007 May; 24(5):835-45. PubMed ID: 17518538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transplantation of mesenchymal stem cells that overexpress NT-3 produce motor improvements without axonal regeneration following complete spinal cord transections in rats.
    Stewart AN; Kendziorski G; Deak ZM; Bartosek NC; Rezmer BE; Jenrow K; Rossignol J; Dunbar GL
    Brain Res; 2018 Nov; 1699():19-33. PubMed ID: 29883625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted Inhibition of Leucine-Rich Repeat and Immunoglobulin Domain-Containing Protein 1 in Transplanted Neural Stem Cells Promotes Neuronal Differentiation and Functional Recovery in Rats Subjected to Spinal Cord Injury.
    Chen N; Cen JS; Wang J; Qin G; Long L; Wang L; Wei F; Xiang Q; Deng DY; Wan Y
    Crit Care Med; 2016 Mar; 44(3):e146-57. PubMed ID: 26491860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perspectives on tissue-engineered nerve regeneration for the treatment of spinal cord injury.
    Kim MS; Lee HB
    Tissue Eng Part A; 2014 Jul; 20(13-14):1781-3. PubMed ID: 24568624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Application progress of seed cells in tissue engineered nerve].
    Li C; Chen Z; Chen T; Zhang F; Zhou J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Feb; 28(2):173-8. PubMed ID: 24796188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current and future periodontal tissue engineering.
    Izumi Y; Aoki A; Yamada Y; Kobayashi H; Iwata T; Akizuki T; Suda T; Nakamura S; Wara-Aswapati N; Ueda M; Ishikawa I
    Periodontol 2000; 2011 Jun; 56(1):166-87. PubMed ID: 21501243
    [No Abstract]   [Full Text] [Related]  

  • 16. Stem cell based strategies for spinal cord injury repair.
    Reeves A; Keirstead HS
    Adv Exp Med Biol; 2012; 760():16-24. PubMed ID: 23281511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for endogenous spinal cord repair: HPMA hydrogel to recruit migrating endogenous stem cells.
    Espinosa-Jeffrey A; Oregel K; Wiggins L; Valera R; Bosnoyan K; Agbo C; Awosika O; Zhao PM; de Vellis J; Woerly S
    Adv Exp Med Biol; 2012; 760():25-52. PubMed ID: 23281512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regeneration-based therapies for spinal cord injuries.
    Okano H; Kaneko S; Okada S; Iwanami A; Nakamura M; Toyama Y
    Neurochem Int; 2007; 51(2-4):68-73. PubMed ID: 17544171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple-channel scaffolds to promote spinal cord axon regeneration.
    Moore MJ; Friedman JA; Lewellyn EB; Mantila SM; Krych AJ; Ameenuddin S; Knight AM; Lu L; Currier BL; Spinner RJ; Marsh RW; Windebank AJ; Yaszemski MJ
    Biomaterials; 2006 Jan; 27(3):419-29. PubMed ID: 16137759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Olfactory ensheathing cells for human spinal cord injury.
    Lopes A
    Neurorehabil Neural Repair; 2010 Oct; 24(8):772-3; author reply 772-3. PubMed ID: 20936775
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.