These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 16386162)

  • 21. Olfactory ensheathing cells for human spinal cord injury.
    Wernig A; Wernig S
    Neurorehabil Neural Repair; 2010 Oct; 24(8):770-2; author reply 770-2. PubMed ID: 20921330
    [No Abstract]   [Full Text] [Related]  

  • 22. Olfactory ensheathing cells for human spinal cord injury.
    de Carvalho M
    Neurorehabil Neural Repair; 2010 Oct; 24(8):772; author reply 772. PubMed ID: 20936774
    [No Abstract]   [Full Text] [Related]  

  • 23. A Review of Stem Cell Therapy for Spinal Cord Injury: Large Animal Models and the Frontier in Humans.
    Gabel BC; Curtis EI; Marsala M; Ciacci JD
    World Neurosurg; 2017 Feb; 98():438-443. PubMed ID: 27876663
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasticity and regeneration in the injured spinal cord after cell transplantation therapy.
    Nori S; Nakamura M; Okano H
    Prog Brain Res; 2017; 231():33-56. PubMed ID: 28554400
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [A new composite matrix bridging both stumps of spinal cord transection in rats to promote recovery of motor function].
    Liang H; Liang P; Gao A; Qi Q; Liu E; Wu J; Xu X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Nov; 23(11):1376-81. PubMed ID: 19968184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potential of human dental stem cells in repairing the complete transection of rat spinal cord.
    Yang C; Li X; Sun L; Guo W; Tian W
    J Neural Eng; 2017 Apr; 14(2):026005. PubMed ID: 28085005
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New strategies for repairing the injured spinal cord: the role of stem cells.
    Garbossa D; Fontanella M; Fronda C; Benevello C; Muraca G; Ducati A; Vercelli A
    Neurol Res; 2006 Jul; 28(5):500-4. PubMed ID: 16808879
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stem cell transplantation and other novel techniques for promoting recovery from spinal cord injury.
    Myckatyn TM; Mackinnon SE; McDonald JW
    Transpl Immunol; 2004 Apr; 12(3-4):343-58. PubMed ID: 15157926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells.
    Cao Q; Xu XM; Devries WH; Enzmann GU; Ping P; Tsoulfas P; Wood PM; Bunge MB; Whittemore SR
    J Neurosci; 2005 Jul; 25(30):6947-57. PubMed ID: 16049170
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using templated agarose scaffolds to promote axon regeneration through sites of spinal cord injury.
    Koffler J; Samara RF; Rosenzweig ES
    Methods Mol Biol; 2014; 1162():157-65. PubMed ID: 24838966
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neural precursors as a cell source to repair the demyelinated spinal cord.
    Kocsis JD; Akiyama Y; Radtke C
    J Neurotrauma; 2004 Apr; 21(4):441-9. PubMed ID: 15115593
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modified acellular nerve-delivering PMSCs improve functional recovery in rats after complete spinal cord transection.
    Tian T; Yu Z; Zhang N; Chang Y; Zhang Y; Zhang L; Zhou S; Zhang C; Feng G; Huang F
    Biomater Sci; 2017 Nov; 5(12):2480-2492. PubMed ID: 29106428
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection.
    Tsai EC; Dalton PD; Shoichet MS; Tator CH
    Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stem cells in the injured spinal cord: reducing the pain and increasing the gain.
    Klein S; Svendsen CN
    Nat Neurosci; 2005 Mar; 8(3):259-60. PubMed ID: 15746908
    [No Abstract]   [Full Text] [Related]  

  • 35. Stem cell transplantation for spinal cord injury repair.
    Lu P
    Prog Brain Res; 2017; 231():1-32. PubMed ID: 28554393
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of glial transplantation on functional recovery following acute spinal cord injury.
    Lee KH; Yoon DH; Park YG; Lee BH
    J Neurotrauma; 2005 May; 22(5):575-89. PubMed ID: 15892602
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Paralysis recovery in humans and model systems.
    Edgerton VR; Roy RR
    Curr Opin Neurobiol; 2002 Dec; 12(6):658-67. PubMed ID: 12490256
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Injectable hydrogel materials for spinal cord regeneration: a review.
    Macaya D; Spector M
    Biomed Mater; 2012 Feb; 7(1):012001. PubMed ID: 22241481
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent advances in nerve tissue engineering.
    Zhang BG; Quigley AF; Myers DE; Wallace GG; Kapsa RM; Choong PF
    Int J Artif Organs; 2014 Apr; 37(4):277-91. PubMed ID: 24811182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stem cells for tendon and ligament tissue engineering and regeneration.
    Siddiqui NA; Wong JM; Khan WS; Hazlerigg A
    J Stem Cells; 2010; 5(4):187-94. PubMed ID: 22314867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.