These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 16386270)

  • 1. Development of the anal vesicle, salivary glands and gut in the egg-larval parasitoid Chelonus inanitus: tools to take up nutrients and to manipulate the host?
    Kaeslin M; Wyler T; Grossniklaus-Bürgin C; Lanzrein B
    J Insect Physiol; 2006 Mar; 52(3):269-81. PubMed ID: 16386270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stage-dependent strategies of host invasion in the egg-larval parasitoid Chelonus inanitus.
    Kaeslin M; Wehrle I; Grossniklaus-Bürgin C; Wyler T; Guggisberg U; Schittny JC; Lanzrein B
    J Insect Physiol; 2005 Mar; 51(3):287-96. PubMed ID: 15749111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the parasitoid Chelonus inanitus and its polydnavirus on host nutritional physiology and implications for parasitoid development.
    Kaeslin M; Pfister-Wilhelm R; Lanzrein B
    J Insect Physiol; 2005 Dec; 51(12):1330-9. PubMed ID: 16203013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stage dependent influences of polydnaviruses and the parasitoid larva on host ecdysteroids.
    Pfister-Wilhelm R; Lanzrein B
    J Insect Physiol; 2009 Aug; 55(8):707-15. PubMed ID: 19446562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the haemolymph proteome of Spodoptera littoralis induced by the parasitoid Chelonus inanitus or its polydnavirus and physiological implications.
    Kaeslin M; Pfister-Wilhelm R; Molina D; Lanzrein B
    J Insect Physiol; 2005 Sep; 51(9):975-88. PubMed ID: 15936028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Venom of the egg-larval parasitoid Chelonus inanitus is a complex mixture and has multiple biological effects.
    Kaeslin M; Reinhard M; Bühler D; Roth T; Pfister-Wilhelm R; Lanzrein B
    J Insect Physiol; 2010 Jul; 56(7):686-94. PubMed ID: 20006617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncoupling of sequential heteromorphic developmental programs.
    Farkas R; Wache S; Jones D
    Arch Insect Biochem Physiol; 1999; 40(1):1-16. PubMed ID: 9987818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental interaction between suboptimal instars of Spodoptera littoralis (Lepidoptera:Noctuidae) and its parasitoid Microplitis rufiventris (Hymenoptera:Braconidae).
    Hegazi E; Khafagi W
    Arch Insect Biochem Physiol; 2005 Dec; 60(4):172-84. PubMed ID: 16304612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leucine transport by the larval midgut of the parasitoid Aphidius ervi (Hymenoptera).
    Fiandra L; Caccia S; Giordana B; Casartelli M
    J Insect Physiol; 2010 Feb; 56(2):165-9. PubMed ID: 19799906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental strategy of the endoparasite Xenos vesparum (strepsiptera, Insecta): host invasion and elusion of its defense reactions.
    Manfredini F; Giusti F; Beani L; Dallai R
    J Morphol; 2007 Jul; 268(7):588-601. PubMed ID: 17437299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stage-dependent expression of Chelonus inanitus polydnavirus genes in the host and the parasitoid.
    Bonvin M; Kojic D; Blank F; Annaheim M; Wehrle I; Wyder S; Kaeslin M; Lanzrein B
    J Insect Physiol; 2004 Nov; 50(11):1015-26. PubMed ID: 15607504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Larval morphology and anatomy of the parasitoid Exorista larvarum (Diptera: Tachinidae), with an emphasis on cephalopharyngeal skeleton and digestive tract.
    Michalková V; Valigurová A; Dindo ML; Vanhara J
    J Parasitol; 2009 Jun; 95(3):544-54. PubMed ID: 18942884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and function of the extraembryonic membrane persisting around the larvae of the parasitoid Toxoneuron nigriceps.
    Grimaldi A; Caccia S; Congiu T; Ferrarese R; Tettamanti G; Rivas-Pena M; Perletti G; Valvassori R; Giordana B; Falabella P; Pennacchio F; de Eguileor M
    J Insect Physiol; 2006 Aug; 52(8):870-80. PubMed ID: 16843482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Host-mediated juvenoids affect development and metamorphosis of endoparasitic wasp, Chelonus blackburni (Hymenoptera: Braconidae) and consequent morphogenetic derangements in its reproductive system.
    Chanda S; Chakravorty S
    Indian J Exp Biol; 2001 Feb; 39(2):143-7. PubMed ID: 11480210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative stress induced by destruxin from Metarhizium anisopliae (Metch.) involves changes in glutathione and ascorbate metabolism and instigates ultrastructural changes in the salivary glands of Spodoptera litura (Fab.) larvae.
    Sowjanya Sree K; Padmaja V
    Toxicon; 2008 Jun; 51(7):1140-50. PubMed ID: 18339414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The midgut ultrastructure of the endoparasite Xenos vesparum (Rossi) (Insecta, Strepsiptera) during post-embryonic development and stable carbon isotopic analyses of the nutrient uptake.
    Giusti F; Dallai L; Beani L; Manfredini F; Dallai R
    Arthropod Struct Dev; 2007 Jun; 36(2):183-97. PubMed ID: 18089098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extraembryonic membranes of the endoparasitic wasp Cotesia congregata: presence of a separate amnion and serosa.
    Beckage NE; de Buron I
    J Parasitol; 1994 Jun; 80(3):389-96. PubMed ID: 8195941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Host nutrition determines blood nutrient composition and mediates parasite developmental success: Manduca sexta L. parasitized by Cotesia congregata (Say).
    Thompson SN; Redak RA; Wang LW
    J Exp Biol; 2005 Feb; 208(Pt 4):625-35. PubMed ID: 15695755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overview of parasitism associated effects on host haemocytes in larval parasitoids and comparison with effects of the egg-larval parasitoid Chelonus inanitus on its host Spodoptera littoralis.
    Lanzrein B; Pfister-Wilhelm R; Wyler T; Trenczek T; Stettler P
    J Insect Physiol; 1998 Sep; 44(9):817-831. PubMed ID: 12769877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrient absorption by Aphidius ervi larvae.
    Caccia S; Leonardi MG; Casartelli M; Grimaldi A; de Eguileor M; Pennacchio F; Giordana B
    J Insect Physiol; 2005 Nov; 51(11):1183-92. PubMed ID: 16085087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.