These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 16386297)

  • 1. The use of (14)C tracer technique to assess the functional response of zooplankton community grazing to toxic impact.
    Hjorth M; Haller R; Dahllöf I
    Mar Environ Res; 2006 Apr; 61(3):339-51. PubMed ID: 16386297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects on the function of three trophic levels in marine plankton communities under stress from the antifouling compound zinc pyrithione.
    Hjorth M; Dahllöf I; Forbes VE
    Aquat Toxicol; 2006 Apr; 77(1):105-15. PubMed ID: 16352351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of light in acute toxicity bioassays of imidacloprid and zinc pyrithione to zooplankton crustaceans.
    Sánchez-Bayo F; Goka K
    Aquat Toxicol; 2006 Jun; 78(3):262-71. PubMed ID: 16690142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal variations in the effect of zinc pyrithione and copper pyrithione on pelagic phytoplankton communities.
    Maraldo K; Dahllöf I
    Aquat Toxicol; 2004 Aug; 69(2):189-98. PubMed ID: 15261454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aquatic mesocosm assessments of a neem (azadirachtin) insecticide at environmentally realistic concentrations--2: zooplankton community responses and recovery.
    Kreutzweiser DP; Back RC; Sutton TM; Pangle KL; Thompson DG
    Ecotoxicol Environ Saf; 2004 Oct; 59(2):194-204. PubMed ID: 15327875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Some ecological implications of a neem (azadirachtin) insecticide disturbance to zooplankton communities in forest pond enclosures.
    Kreutzweiser DP; Sutton TM; Back RC; Pangle KL; Thompson DG
    Aquat Toxicol; 2004 Apr; 67(3):239-54. PubMed ID: 15063074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence of Holling type III zooplankton functional response: bringing together field evidence and mathematical modelling.
    Morozov AY
    J Theor Biol; 2010 Jul; 265(1):45-54. PubMed ID: 20406647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a correct description of zooplankton feeding in models: taking into account food-mediated unsynchronized vertical migration.
    Morozov AY; Arashkevich EG
    J Theor Biol; 2010 Jan; 262(2):346-60. PubMed ID: 19782091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended probit mortality model for zooplankton against transient change of PCO(2).
    Sato T; Watanabe Y; Toyota K; Ishizaka J
    Mar Pollut Bull; 2005 Sep; 50(9):975-9. PubMed ID: 15913663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity assessment of the antifouling compound zinc pyrithione using early developmental stages of the ascidian Ciona intestinalis.
    Bellas J
    Biofouling; 2005; 21(5-6):289-96. PubMed ID: 16522542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of cypermethrin on marine plankton communities: a simulated field study using mesocosms.
    Medina M; Barata C; Telfer T; Baird DJ
    Ecotoxicol Environ Saf; 2004 Jun; 58(2):236-45. PubMed ID: 15157578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of pyrene on grazing and reproduction of Calanus finmarchicus and Calanus glacialis from Disko Bay, West Greenland.
    Jensen MH; Nielsen TG; Dahllöf I
    Aquat Toxicol; 2008 Apr; 87(2):99-107. PubMed ID: 18291539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short and long-term effects of low-sulphur fuels on marine zooplankton communities.
    Jönander C; Dahllöf I
    Aquat Toxicol; 2020 Oct; 227():105592. PubMed ID: 32891020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of pesticide application on zooplankton communities with different densities of invertebrate predators: an experimental analysis using small-scale mesocosms.
    Chang KH; Sakamoto M; Hanazato T
    Aquat Toxicol; 2005 May; 72(4):373-82. PubMed ID: 15848256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zooplankton chitobiase activity as an endpoint of pharmaceutical effect.
    Richards SM; Kelly SE; Hanson ML
    Arch Environ Contam Toxicol; 2008 May; 54(4):637-44. PubMed ID: 17972005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The copepod Tigriopus: a promising marine model organism for ecotoxicology and environmental genomics.
    Raisuddin S; Kwok KW; Leung KM; Schlenk D; Lee JS
    Aquat Toxicol; 2007 Jul; 83(3):161-73. PubMed ID: 17560667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term effects of the antifouling booster biocide Irgarol 1051 on periphyton, plankton and ecosystem function in freshwater pond mesocosms.
    Mohr S; Schröder H; Feibicke M; Berghahn R; Arp W; Nicklisch A
    Aquat Toxicol; 2008 Nov; 90(2):109-20. PubMed ID: 18817992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity of estuarine sediments using a full life-cycle bioassay with the marine copepod Robertsonia propinqua.
    Hack LA; Tremblay LA; Wratten SD; Forrester G; Keesing V
    Ecotoxicol Environ Saf; 2008 Jul; 70(3):469-74. PubMed ID: 18242700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embryotoxicity of the antifouling biocide zinc pyrithione to sea urchin (Paracentrotus lividus) and mussel (Mytilus edulis).
    Bellas J; Granmo K; Beiras R
    Mar Pollut Bull; 2005 Nov; 50(11):1382-5. PubMed ID: 16023145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.