These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 16386362)

  • 1. Kinetics of RDX degradation by zero-valent iron (ZVI).
    Wanaratna P; Christodoulatos C; Sidhoum M
    J Hazard Mater; 2006 Aug; 136(1):68-74. PubMed ID: 16386362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of hexahydro-1,3,5-trinitro-1,3,5-triazine through initial reduction to hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine followed by denitration in Clostridium bifermentans HAW-1.
    Zhao JS; Paquet L; Halasz A; Hawari J
    Appl Microbiol Biotechnol; 2003 Dec; 63(2):187-93. PubMed ID: 12827319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using zerovalent iron nanoparticles.
    Naja G; Halasz A; Thiboutot S; Ampleman G; Hawari J
    Environ Sci Technol; 2008 Jun; 42(12):4364-70. PubMed ID: 18605556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Up-and-down procedure (UDP) determinations of acute oral toxicity of nitroso degradation products of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX).
    Meyer SA; Marchand AJ; Hight JL; Roberts GH; Escalon LB; Inouye LS; MacMillan DK
    J Appl Toxicol; 2005; 25(5):427-34. PubMed ID: 16092083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age dependent acute oral toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and two anaerobic N-nitroso metabolites in deer mice (Peromyscus maniculatus).
    Smith JN; Liu J; Espino MA; Cobb GP
    Chemosphere; 2007 May; 67(11):2267-73. PubMed ID: 17275885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zero-valent iron pretreatment for enhancing the biodegradability of RDX.
    Oh SY; Chiu PC; Kim BJ; Cha DK
    Water Res; 2005 Dec; 39(20):5027-32. PubMed ID: 16290903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical reduction of nitrate by nanosized iron: kinetics and pathways.
    Yang GC; Lee HL
    Water Res; 2005 Mar; 39(5):884-94. PubMed ID: 15743635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake, bioaccumulation, and biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and its reduced metabolites (MNX and TNX) by the earthworm (Eisenia fetida).
    Zhang B; Pan X; Cobb GP; Anderson TA
    Chemosphere; 2009 Jun; 76(1):76-82. PubMed ID: 19278715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustained and complete hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation in zero-valent iron simulated barriers under different microbial conditions.
    Shrout JD; Larese-Casanova P; Scherer MM; Alvarez PJ
    Environ Technol; 2005 Oct; 26(10):1115-26. PubMed ID: 16342534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of nitrate by resin-supported nanoscale zero-valent iron.
    Park H; Park YM; Yoo KM; Lee SH
    Water Sci Technol; 2009; 59(11):2153-7. PubMed ID: 19494454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing Fenton oxidation of TNT and RDX through pretreatment with zero-valent iron.
    Oh SY; Chiu PC; Kim BJ; Cha DK
    Water Res; 2003 Oct; 37(17):4275-83. PubMed ID: 12946911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of RDX nitroso products MNX and TNX by cytochrome P450 XplA.
    Halasz A; Manno D; Perreault NN; Sabbadin F; Bruce NC; Hawari J
    Environ Sci Technol; 2012 Jul; 46(13):7245-51. PubMed ID: 22694209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of zero-valent iron reductive transformation of the anthraquinone dye Reactive Blue 4.
    Epolito WJ; Yang H; Bottomley LA; Pavlostathis SG
    J Hazard Mater; 2008 Dec; 160(2-3):594-600. PubMed ID: 18436373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of N-nitroso derivatives of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in soils by pressurized liquid extraction and liquid chromatography-electrospray ionization mass spectrometry.
    Pan X; Zhang B; Cox SB; Anderson TA; Cobb GP
    J Chromatogr A; 2006 Feb; 1107(1-2):2-8. PubMed ID: 16387311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling the long-term performance of zero-valent iron using a spatio-temporal approach for iron aging.
    Kouznetsova I; Bayer P; Ebert M; Finkel M
    J Contam Hydrol; 2007 Feb; 90(1-2):58-80. PubMed ID: 17113680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fate of nitrogen species in nitrate reduction by nanoscale zero valent iron and characterization of the reaction kinetics.
    Hwang YH; Kim DG; Ahn YT; Moon CM; Shin HS
    Water Sci Technol; 2010; 61(3):705-12. PubMed ID: 20150707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of the chemical reduction of nitrate by zero-valent iron.
    Rodríguez-Maroto JM; García-Herruzo F; García-Rubio A; Gómez-Lahoz C; Vereda-Alonso C
    Chemosphere; 2009 Feb; 74(6):804-9. PubMed ID: 19041116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of the nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-triazine and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in cold marine sediment under anaerobic and oligotrophic conditions.
    Zhao JS; Greer CW; Thiboutot S; Ampleman G; Hawari J
    Can J Microbiol; 2004 Feb; 50(2):91-6. PubMed ID: 15052310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overestimation of nitrate and nitrite concentrations in water samples due to the presence of nitroglycerin or hexahydro-1,3,5-trinitro-1,3,5-triazine.
    Bordeleau G; Martel R; Lévesque R; Ampleman G; Thiboutot S; Marois A
    J Chromatogr A; 2012 Aug; 1252():130-5. PubMed ID: 22809517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressurized CO2/zero valent iron system for nitrate removal.
    Li CW; Chen YM; Yen WS
    Chemosphere; 2007 Jun; 68(2):310-6. PubMed ID: 17280698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.