BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 16386821)

  • 41. Reactive transport modelling of biogeochemical processes and carbon isotope geochemistry inside a landfill leachate plume.
    van Breukelen BM; Griffioen J; Röling WF; van Verseveld HW
    J Contam Hydrol; 2004 Jun; 70(3-4):249-69. PubMed ID: 15134877
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Carbon isotope fractionation during reductive dechlorination of TCE in batch experiments with iron samples from reactive barriers.
    Schüth C; Bill M; Barth JA; Slater GF; Kalin RM
    J Contam Hydrol; 2003 Oct; 66(1-2):25-37. PubMed ID: 14516939
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Upscaling retardation factor in hierarchical porous media with multimodal reactive mineral facies.
    Deng H; Dai Z; Wolfsberg AV; Ye M; Stauffer PH; Lu Z; Kwicklis E
    Chemosphere; 2013 Apr; 91(3):248-57. PubMed ID: 23260249
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dechlorination of trichloroethylene by a steel converter slag amended with Fe(II).
    Kang WH; Hwang I; Park JY
    Chemosphere; 2006 Jan; 62(2):285-93. PubMed ID: 16002122
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influences of humic acid, bicarbonate and calcium on Cr(VI) reductive removal by zero-valent iron.
    Liu T; Rao P; Lo IM
    Sci Total Environ; 2009 May; 407(10):3407-14. PubMed ID: 19232679
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of recharge-induced geochemical change in a contaminated aquifer.
    McGuire JT; Long DT; Hyndman DW
    Ground Water; 2005; 43(4):518-30. PubMed ID: 16029178
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of gas generation and precipitates on performance of Fe0 PRBs.
    Zhang Y; Gillham RW
    Ground Water; 2005; 43(1):113-21. PubMed ID: 15726929
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Investigating the role of gas bubble formation and entrapment in contaminated aquifers: Reactive transport modelling.
    Amos RT; Ulrich Mayer K
    J Contam Hydrol; 2006 Sep; 87(1-2):123-54. PubMed ID: 16797104
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of surfactant-facilitated interfacial tension reduction on chlorinated solvent migration in porous media: observations and numerical simulation.
    Rathfelder KM; Abriola LM; Singletary MA; Pennell KD
    J Contam Hydrol; 2003 Jul; 64(3-4):227-52. PubMed ID: 12814882
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biogeochemistry of two types of permeable reactive barriers, organic carbon and iron-bearing organic carbon for mine drainage treatment: column experiments.
    Guo Q; Blowes DW
    J Contam Hydrol; 2009 Jul; 107(3-4):128-39. PubMed ID: 19467564
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of mass transfer characteristics for DNAPL source depletion and contaminant flux in a highly characterized glaciofluvial aquifer.
    Maji R; Sudicky EA
    J Contam Hydrol; 2008 Nov; 102(1-2):105-19. PubMed ID: 18929427
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A combined PHREEQC-2/parallel fracture model for the simulation of laminar/non-laminar flow and contaminant transport with reactions.
    Masciopinto C; Volpe A; Palmiotta D; Cherubini C
    J Contam Hydrol; 2010 Sep; 117(1-4):94-108. PubMed ID: 20701994
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Large-scale modeling of reactive solute transport in fracture zones of granitic bedrocks.
    Molinero J; Samper J
    J Contam Hydrol; 2006 Jan; 82(3-4):293-318. PubMed ID: 16337025
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Parameter and observation importance in modelling virus transport in saturated porous media-investigations in a homogenous system.
    Barth GR; Hill MC
    J Contam Hydrol; 2005 Nov; 80(3-4):107-29. PubMed ID: 16202474
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Life-cycle case study comparison of permeable reactive barrier versus pump-and-treat remediation.
    Higgins MR; Olson TM
    Environ Sci Technol; 2009 Dec; 43(24):9432-8. PubMed ID: 20000540
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Degradation kinetics of TNT in the presence of six mineral surfaces and ferrous iron.
    Nefso EK; Burns SE; McGrath CJ
    J Hazard Mater; 2005 Aug; 123(1-3):79-88. PubMed ID: 15961226
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation of groundwater flow patterns around a dual-screened groundwater circulation well.
    Johnson RL; Simon MA
    J Contam Hydrol; 2007 Aug; 93(1-4):188-202. PubMed ID: 17428573
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Removal of As, Mn, Mo, Se, U, V and Zn from groundwater by zero-valent iron in a passive treatment cell: reaction progress modeling.
    Morrison SJ; Metzler DR; Dwyer BP
    J Contam Hydrol; 2002 May; 56(1-2):99-116. PubMed ID: 12076025
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Simulation of solute transport across low-permeability barrier walls.
    Harte PT; Konikow LF; Hornberger GZ
    J Contam Hydrol; 2006 May; 85(3-4):247-70. PubMed ID: 16600421
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Karst spring responses examined by process-based modeling.
    Birk S; Liedl R; Sauter M
    Ground Water; 2006; 44(6):832-6. PubMed ID: 17087755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.