BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 16387378)

  • 21. Stochastic and deterministic model of microbial heat inactivation.
    Corradini MG; Normand MD; Peleg M
    J Food Sci; 2010 Mar; 75(2):R59-70. PubMed ID: 20492253
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modelling thermal inactivation of Listeria monocytogenes in sucrose solutions of various water activities.
    Fernández A; López M; Bernardo A; Condón S; Raso J
    Food Microbiol; 2007 Jun; 24(4):372-9. PubMed ID: 17189763
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Statistical evaluation of mathematical models for microbial growth.
    López S; Prieto M; Dijkstra J; Dhanoa MS; France J
    Int J Food Microbiol; 2004 Nov; 96(3):289-300. PubMed ID: 15454319
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modelling the bacterial survival/death interface induced by high pressure processing.
    Koseki S; Yamamoto K
    Int J Food Microbiol; 2007 May; 116(1):136-43. PubMed ID: 17307266
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pressure inactivation kinetics of Enterobacter sakazakii in infant formula milk.
    Pina Pérez MC; Rodrigo Aliaga D; Saucedo Reyes D; Martínez López A
    J Food Prot; 2007 Oct; 70(10):2281-9. PubMed ID: 17969609
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combined high pressure and temperature induced lethal and sublethal injury of Lactococcus lactis--application of multivariate statistical analysis.
    Kilimann KV; Hartmann C; Delgado A; Vogel RF; Gänzle MG
    Int J Food Microbiol; 2006 May; 109(1-2):25-33. PubMed ID: 16499985
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A predictive model for the influence of food components on survival of Listeria monocytogenes LM 54004 under high hydrostatic pressure and mild heat conditions.
    Gao YL; Ju XR; Wu-Ding
    Int J Food Microbiol; 2007 Jul; 117(3):287-94. PubMed ID: 17537535
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling non-isothermal heat inactivation of microorganisms having biphasic isothermal survival curves.
    Corradini MG; Normand MD; Peleg M
    Int J Food Microbiol; 2007 May; 116(3):391-9. PubMed ID: 17395330
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of the Weibull and log normal distribution functions as survival models of Escherichia coli under isothermal and non isothermal conditions.
    Aragao GM; Corradini MG; Normand MD; Peleg M
    Int J Food Microbiol; 2007 Nov; 119(3):243-57. PubMed ID: 17869362
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-pressure pulses for Aspergillus niger spore inactivation in a model pharmaceutical lipid emulsion.
    Brito-Bazán E; Ascanio G; Iñiguez-Moreno M; Calderón-Santoyo M; Córdova-Aguilar MS; Brito-de la Fuente E; Ragazzo-Sánchez JA
    Int J Food Microbiol; 2023 Aug; 399():110255. PubMed ID: 37210954
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temperature and treatment time influence high hydrostatic pressure inactivation of feline calicivirus, a norovirus surrogate.
    Chen H; Hoover DG; Kingsley DH
    J Food Prot; 2005 Nov; 68(11):2389-94. PubMed ID: 16300078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling the pressure inactivation of Escherichia coli and Salmonella typhimurium in sapote mamey ( Pouteria sapota (Jacq.) H.E. Moore & Stearn) pulp.
    Saucedo-Reyes D; Carrillo-Salazar JA; Román-Padilla L; Saucedo-Veloz C; Reyes-Santamaría MI; Ramírez-Gilly M; Tecante A
    Food Sci Technol Int; 2018 Mar; 24(2):117-131. PubMed ID: 29050495
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inactivation of Escherichia coli inoculated into cloudy apple juice exposed to dense phase carbon dioxide.
    Liao H; Hu X; Liao X; Chen F; Wu J
    Int J Food Microbiol; 2007 Sep; 118(2):126-31. PubMed ID: 17689768
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mathematical modeling of Saccharomyces cerevisiae inactivation under high-pressure carbon dioxide.
    Erkmen O
    Nahrung; 2003 Jun; 47(3):176-80. PubMed ID: 12866619
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells.
    van Boekel MA
    Int J Food Microbiol; 2002 Mar; 74(1-2):139-59. PubMed ID: 11930951
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of growth temperature and growth phase on the inactivation of Listeria monocytogenes in whole milk subject to high pressure processing.
    Hayman MM; Anantheswaran RC; Knabel SJ
    Int J Food Microbiol; 2007 Apr; 115(2):220-6. PubMed ID: 17173999
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling the pulsed light inactivation of microorganisms naturally occurring on vegetable substrates.
    Izquier A; Gómez-López VM
    Food Microbiol; 2011 Sep; 28(6):1170-4. PubMed ID: 21645816
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extracting survival parameters from isothermal, isobaric, and "iso-concentration" inactivation experiments by the "3 end points method".
    Corradini MG; Normand MD; Newcomer C; Schaffner DW; Peleg M
    J Food Sci; 2009; 74(1):R1-R11. PubMed ID: 19200112
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermal inactivation kinetics of Lactococcus lactis subsp. lactis bacteriophage pll98-22.
    Sanlibaba P; Buzrul S; Akkoç N; Alpas H; Akçelik M
    Acta Biol Hung; 2009 Mar; 60(1):127-36. PubMed ID: 19378929
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploiting the combined effects of high pressure and moderate heat with nisin on inactivation of Clostridium botulinum spores.
    Gao YL; Ju XR
    J Microbiol Methods; 2008 Jan; 72(1):20-8. PubMed ID: 18068839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.