BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 16387635)

  • 1. A single vesicular glutamate transporter is sufficient to fill a synaptic vesicle.
    Daniels RW; Collins CA; Chen K; Gelfand MV; Featherstone DE; DiAntonio A
    Neuron; 2006 Jan; 49(1):11-6. PubMed ID: 16387635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased expression of the Drosophila vesicular glutamate transporter leads to excess glutamate release and a compensatory decrease in quantal content.
    Daniels RW; Collins CA; Gelfand MV; Dant J; Brooks ES; Krantz DE; DiAntonio A
    J Neurosci; 2004 Nov; 24(46):10466-74. PubMed ID: 15548661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vesicular monogamy?
    Krantz DE
    Neuron; 2006 Jan; 49(1):1-2. PubMed ID: 16387631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The expression pattern of the Drosophila vesicular glutamate transporter: a marker protein for motoneurons and glutamatergic centers in the brain.
    Mahr A; Aberle H
    Gene Expr Patterns; 2006 Mar; 6(3):299-309. PubMed ID: 16378756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vesicular glutamate transporter expression level affects synaptic vesicle release probability at hippocampal synapses in culture.
    Herman MA; Ackermann F; Trimbuch T; Rosenmund C
    J Neurosci; 2014 Aug; 34(35):11781-91. PubMed ID: 25164673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantal size and variation determined by vesicle size in normal and mutant Drosophila glutamatergic synapses.
    Karunanithi S; Marin L; Wong K; Atwood HL
    J Neurosci; 2002 Dec; 22(23):10267-76. PubMed ID: 12451127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible evidence for differences in synaptic effectiveness with activity-dependent vesicular uptake and release of FM1-43.
    Quigley PA; Msghina M; Govind CK; Atwood HL
    J Neurophysiol; 1999 Jan; 81(1):356-70. PubMed ID: 9914295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AP180 maintains the distribution of synaptic and vesicle proteins in the nerve terminal and indirectly regulates the efficacy of Ca2+-triggered exocytosis.
    Bao H; Daniels RW; MacLeod GT; Charlton MP; Atwood HL; Zhang B
    J Neurophysiol; 2005 Sep; 94(3):1888-903. PubMed ID: 15888532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presynaptic regulation of quantal size by the vesicular glutamate transporter VGLUT1.
    Wilson NR; Kang J; Hueske EV; Leung T; Varoqui H; Murnick JG; Erickson JD; Liu G
    J Neurosci; 2005 Jun; 25(26):6221-34. PubMed ID: 15987952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Presynaptic regulation of quantal size: K+/H+ exchange stimulates vesicular glutamate transport.
    Goh GY; Huang H; Ullman J; Borre L; Hnasko TS; Trussell LO; Edwards RH
    Nat Neurosci; 2011 Aug; 14(10):1285-92. PubMed ID: 21874016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stoned B mediates sorting of integral synaptic vesicle proteins.
    Mohrmann R; Matthies HJ; Woodruff E; Broadie K
    Neuroscience; 2008 Jun; 153(4):1048-63. PubMed ID: 18436388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VGLUTs: 'exciting' times for glutamatergic research?
    Takamori S
    Neurosci Res; 2006 Aug; 55(4):343-51. PubMed ID: 16765470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central cholinergic synaptic vesicle loading obeys the set-point model in Drosophila.
    Cash F; Vernon SW; Phelan P; Goodchild J; Baines RA
    J Neurophysiol; 2016 Feb; 115(2):843-50. PubMed ID: 26655826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased vesicular glutamate transporter expression causes excitotoxic neurodegeneration.
    Daniels RW; Miller BR; DiAntonio A
    Neurobiol Dis; 2011 Feb; 41(2):415-20. PubMed ID: 20951206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The origin of quantal size variation: vesicular glutamate concentration plays a significant role.
    Wu XS; Xue L; Mohan R; Paradiso K; Gillis KD; Wu LG
    J Neurosci; 2007 Mar; 27(11):3046-56. PubMed ID: 17360928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular, Structural, Functional, and Pharmacological Sites for Vesicular Glutamate Transporter Regulation.
    Pietrancosta N; Djibo M; Daumas S; El Mestikawy S; Erickson JD
    Mol Neurobiol; 2020 Jul; 57(7):3118-3142. PubMed ID: 32474835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a Human Point Mutation of VGLUT3 (p.A211V) in the Rodent Brain Suggests a Nonuniform Distribution of the Transporter in Synaptic Vesicles.
    Ramet L; Zimmermann J; Bersot T; Poirel O; De Gois S; Silm K; Sakae DY; Mansouri-Guilani N; Bourque MJ; Trudeau LE; Pietrancosta N; Daumas S; Bernard V; Rosenmund C; El Mestikawy S
    J Neurosci; 2017 Apr; 37(15):4181-4199. PubMed ID: 28314816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experience-dependent formation and recruitment of large vesicles from reserve pool.
    Steinert JR; Kuromi H; Hellwig A; Knirr M; Wyatt AW; Kidokoro Y; Schuster CM
    Neuron; 2006 Jun; 50(5):723-33. PubMed ID: 16731511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic vesicle protein trafficking at the glutamate synapse.
    Santos MS; Li H; Voglmaier SM
    Neuroscience; 2009 Jan; 158(1):189-203. PubMed ID: 18472224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic and vesicular co-localization of the glutamate transporters VGLUT1 and VGLUT2 in the mouse hippocampus.
    Herzog E; Takamori S; Jahn R; Brose N; Wojcik SM
    J Neurochem; 2006 Nov; 99(3):1011-8. PubMed ID: 16942593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.