These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 16387760)

  • 1. Dissecting the contribution of diffusion and interactions to the mobility of nuclear proteins.
    Beaudouin J; Mora-Bermúdez F; Klee T; Daigle N; Ellenberg J
    Biophys J; 2006 Mar; 90(6):1878-94. PubMed ID: 16387760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tropical--parameter estimation and simulation of reaction-diffusion models based on spatio-temporal microscopy images.
    Ulrich M; Kappel C; Beaudouin J; Hezel S; Ulrich J; Eils R
    Bioinformatics; 2006 Nov; 22(21):2709-10. PubMed ID: 16940327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing fluorescence recovery curves for nuclear proteins undergoing binding events.
    Carrero G; Crawford E; Hendzel MJ; de Vries G
    Bull Math Biol; 2004 Nov; 66(6):1515-45. PubMed ID: 15522344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting chromatin interactions in living cells from protein mobility maps.
    Erdel F; Müller-Ott K; Baum M; Wachsmuth M; Rippe K
    Chromosome Res; 2011 Jan; 19(1):99-115. PubMed ID: 20848178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence recovery after photobleaching: application to nuclear proteins.
    Houtsmuller AB
    Adv Biochem Eng Biotechnol; 2005; 95():177-99. PubMed ID: 16080269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of binding mechanisms of nuclear proteins using confocal scanning laser microscopy and FRAP.
    Tsibidis GD; Ripoll J
    J Theor Biol; 2008 Aug; 253(4):755-68. PubMed ID: 18538796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enumeration of oligomerization states of membrane proteins in living cells by homo-FRET spectroscopy and microscopy: theory and application.
    Yeow EK; Clayton AH
    Biophys J; 2007 May; 92(9):3098-104. PubMed ID: 17416632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of biomolecule mass transport and binding rate parameters in living cells by inverse modeling.
    Sadegh Zadeh K; Montas HJ; Shirmohammadi A
    Theor Biol Med Model; 2006 Oct; 3():36. PubMed ID: 17034642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A finite element model for protein transport in vivo.
    Sadegh Zadeh K; Elman HC; Montas HJ; Shirmohammadi A
    Biomed Eng Online; 2007 Jun; 6():24. PubMed ID: 17598901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative interpretation of binding reactions of rapidly diffusing species using fluorescence recovery after photobleaching.
    Tsibidis GD
    J Microsc; 2009 Mar; 233(3):384-90. PubMed ID: 19250459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying effects of ligands on androgen receptor nuclear translocation, intranuclear dynamics, and solubility.
    Marcelli M; Stenoien DL; Szafran AT; Simeoni S; Agoulnik IU; Weigel NL; Moran T; Mikic I; Price JH; Mancini MA
    J Cell Biochem; 2006 Jul; 98(4):770-88. PubMed ID: 16440331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging of single mRNA molecules moving within a living cell nucleus.
    Tadakuma H; Ishihama Y; Shibuya T; Tani T; Funatsu T
    Biochem Biophys Res Commun; 2006 Jun; 344(3):772-9. PubMed ID: 16631111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel in situ assay for the identification and characterization of soluble nuclear mobility factors.
    Elbi C; Walker DA; Lewis M; Romero G; Sullivan WP; Toft DO; Hager GL; DeFranco DB
    Sci STKE; 2004 Jun; 2004(238):pl10. PubMed ID: 15213337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing nucleocytoplasmic transport by two-photon activation of PA-GFP.
    Chen Y; MacDonald PJ; Skinner JP; Patterson GH; Müller JD
    Microsc Res Tech; 2006 Mar; 69(3):220-6. PubMed ID: 16538629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How to quantify protein diffusion in the bacterial membrane.
    van den Wildenberg SM; Bollen YJ; Peterman EJ
    Biopolymers; 2011 May; 95(5):312-21. PubMed ID: 21240922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence perturbation techniques to study mobility and molecular dynamics of proteins in live cells: FRAP, photoactivation, photoconversion, and FLIP.
    Bancaud A; Huet S; Rabut G; Ellenberg J
    Cold Spring Harb Protoc; 2010 Dec; 2010(12):pdb.top90. PubMed ID: 21123431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative fluorescence imaging of protein diffusion and interaction in living cells.
    Capoulade J; Wachsmuth M; Hufnagel L; Knop M
    Nat Biotechnol; 2011 Aug; 29(9):835-9. PubMed ID: 21822256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence recovery after photobleaching (FRAP) to study nuclear protein dynamics in living cells.
    van Royen ME; Farla P; Mattern KA; Geverts B; Trapman J; Houtsmuller AB
    Methods Mol Biol; 2009; 464():363-85. PubMed ID: 18951195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence correlation spectroscopy to assess the mobility of nuclear proteins.
    Weidtkamp-Peters S; Weisshart K; Schmiedeberg L; Hemmerich P
    Methods Mol Biol; 2009; 464():321-41. PubMed ID: 18951193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facilitated diffusion of proteins on chromatin.
    Bénichou O; Chevalier C; Meyer B; Voituriez R
    Phys Rev Lett; 2011 Jan; 106(3):038102. PubMed ID: 21405302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.