BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 16387776)

  • 21. A mutation in the S6 segment of the KvAP channel changes the secondary structure and alters ion channel activity in a lipid bilayer membrane.
    Malik C; Ghosh S
    Amino Acids; 2022 Nov; 54(11):1461-1475. PubMed ID: 35896819
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of conserved glycines in pH gating of Kir1.1 (ROMK).
    Sackin H; Nanazashvili M; Palmer LG; Li H
    Biophys J; 2006 May; 90(10):3582-9. PubMed ID: 16533837
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of diaminopropionic acid (Dap) on the biophysical properties of a modified synthetic channel-forming peptide.
    Bukovnik U; Sala-Rabanal M; Francis S; Frazier SJ; Schultz BD; Nichols CG; Tomich JM
    Mol Pharm; 2013 Oct; 10(10):3959-66. PubMed ID: 24010543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities.
    Zhao J; Zhao C; Liang G; Zhang M; Zheng J
    J Chem Inf Model; 2013 Dec; 53(12):3280-96. PubMed ID: 24279498
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A synthetic peptide forms voltage-gated porin-like ion channels in lipid bilayer membranes.
    Thundimadathil J; Roeske RW; Guo L
    Biochem Biophys Res Commun; 2005 May; 330(2):585-90. PubMed ID: 15796923
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of a functional calcium channel protein: inferences about an ion channel-forming motif derived from the primary structure of voltage-gated calcium channels.
    Grove A; Tomich JM; Iwamoto T; Montal M
    Protein Sci; 1993 Nov; 2(11):1918-30. PubMed ID: 7505682
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The activation mechanism of alpha1 homomeric glycine receptors.
    Beato M; Groot-Kormelink PJ; Colquhoun D; Sivilotti LG
    J Neurosci; 2004 Jan; 24(4):895-906. PubMed ID: 14749434
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The diphtheria toxin channel-forming T-domain translocates its own NH2-terminal region and the catalytic domain across planar phospholipid bilayers.
    Finkelstein A; Oh KJ; Senzel L; Gordon M; Blaustein RO; Collier RJ
    Int J Med Microbiol; 2000 Oct; 290(4-5):435-40. PubMed ID: 11111923
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rational combinatorial design of pore-forming beta-sheet peptides.
    Rausch JM; Marks JR; Wimley WC
    Proc Natl Acad Sci U S A; 2005 Jul; 102(30):10511-5. PubMed ID: 16020534
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mapping the membrane topography of the TH6-TH7 segment of the diphtheria toxin T-domain channel.
    Kienker PK; Wu Z; Finkelstein A
    J Gen Physiol; 2015 Feb; 145(2):107-25. PubMed ID: 25582482
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The C-terminal half of the colicin A pore-forming domain is active in vivo and in vitro.
    Nardi A; Slatin SL; Baty D; Duché D
    J Mol Biol; 2001 Apr; 307(5):1293-303. PubMed ID: 11292342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heating-enabled formation of droplet interface bilayers using Escherichia coli total lipid extract.
    Taylor GJ; Sarles SA
    Langmuir; 2015; 31(1):325-37. PubMed ID: 25514167
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous measurement of spectroscopic and physiological signals from a planar bilayer system: detecting voltage-dependent movement of a membrane-incorporated peptide.
    Hanyu Y; Yamada T; Matsumoto G
    Biochemistry; 1998 Nov; 37(44):15376-82. PubMed ID: 9799498
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Site-directed mutagenesis of tyrosine 118 within the central constriction site of the LamB (Maltoporin) channel of Escherichia coli. I. Effect on ion transport.
    Orlik F; Andersen C; Benz R
    Biophys J; 2002 May; 82(5):2466-75. PubMed ID: 11964234
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Geometric rules of channel gating inferred from computational models of the P2X receptor transmembrane domain.
    Li GH
    J Mol Graph Model; 2015 Sep; 61():107-14. PubMed ID: 26209765
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of the central arginine R133 toward the ion selectivity of the phosphate specific channel OprP: effects of charge and solvation.
    Modi N; Bárcena-Uribarri I; Bains M; Benz R; Hancock RE; Kleinekathöfer U
    Biochemistry; 2013 Aug; 52(33):5522-32. PubMed ID: 23875754
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Application of Brownian dynamics to the description of transmembrane ion flow as exemplified by the chloride channel of glycine receptor].
    Boronovskiĭ SE; Nartsissov IaR
    Biofizika; 2009; 54(3):448-53. PubMed ID: 19569504
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association.
    Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG
    Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Normal mode gating motions of a ligand-gated ion channel persist in a fully hydrated lipid bilayer model.
    Bertaccini EJ; Trudell JR; Lindahl E
    ACS Chem Neurosci; 2010 Aug; 1(8):552-8. PubMed ID: 22816018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A synthetic ion channel with anisotropic ligand response.
    Muraoka T; Noguchi D; Kasai RS; Sato K; Sasaki R; Tabata KV; Ekimoto T; Ikeguchi M; Kamagata K; Hoshino N; Noji H; Akutagawa T; Ichimura K; Kinbara K
    Nat Commun; 2020 Jun; 11(1):2924. PubMed ID: 32522996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.