BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 16387866)

  • 1. Predicting chromosomal locations of genetically mapped loci in maize using the Morgan2McClintock Translator.
    Lawrence CJ; Seigfried TE; Bass HW; Anderson LK
    Genetics; 2006 Mar; 172(3):2007-9. PubMed ID: 16387866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of pachytene FISH maps for six maize chromosomes and their integration with other maize maps for insights into genome structure variation.
    Figueroa DM; Bass HW
    Chromosome Res; 2012 May; 20(4):363-80. PubMed ID: 22588802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic, physical, and informatics resources for maize. On the road to an integrated map.
    Cone KC; McMullen MD; Bi IV; Davis GL; Yim YS; Gardiner JM; Polacco ML; Sanchez-Villeda H; Fang Z; Schroeder SG; Havermann SA; Bowers JE; Paterson AH; Soderlund CA; Engler FW; Wing RA; Coe EH
    Plant Physiol; 2002 Dec; 130(4):1598-605. PubMed ID: 12481043
    [No Abstract]   [Full Text] [Related]  

  • 4. Uneven distribution of expressed sequence tag loci on maize pachytene chromosomes.
    Anderson LK; Lai A; Stack SM; Rizzon C; Gaut BS
    Genome Res; 2006 Jan; 16(1):115-22. PubMed ID: 16339046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating genetic linkage maps with pachytene chromosome structure in maize.
    Anderson LK; Salameh N; Bass HW; Harper LC; Cande WZ; Weber G; Stack SM
    Genetics; 2004 Apr; 166(4):1923-33. PubMed ID: 15126409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A BAC pooling strategy combined with PCR-based screenings in a large, highly repetitive genome enables integration of the maize genetic and physical maps.
    Yim YS; Moak P; Sanchez-Villeda H; Musket TA; Close P; Klein PE; Mullet JE; McMullen MD; Fang Z; Schaeffer ML; Gardiner JM; Coe EH; Davis GL
    BMC Genomics; 2007 Feb; 8():47. PubMed ID: 17291341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gapless assembly of maize chromosomes using long-read technologies.
    Liu J; Seetharam AS; Chougule K; Ou S; Swentowsky KW; Gent JI; Llaca V; Woodhouse MR; Manchanda N; Presting GG; Kudrna DA; Alabady M; Hirsch CN; Fengler KA; Ware D; Michael TP; Hufford MB; Dawe RK
    Genome Biol; 2020 May; 21(1):121. PubMed ID: 32434565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical localization of single-copy sequences on pachytene chromosomes in maize (Zea mays L.) by chromosome in situ suppression hybridization.
    Sadder MT; Ponelies N; Born U; Weber G
    Genome; 2000 Dec; 43(6):1081-3. PubMed ID: 11195341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MASiVE: Mapping and Analysis of Sirevirus Elements in plant genome sequences.
    Darzentas N; Bousios A; Apostolidou V; Tsaftaris AS
    Bioinformatics; 2010 Oct; 26(19):2452-4. PubMed ID: 20696734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Locus Lookup tool at MaizeGDB: identification of genomic regions in maize by integrating sequence information with physical and genetic maps.
    Andorf CM; Lawrence CJ; Harper LC; Schaeffer ML; Campbell DA; Sen TZ
    Bioinformatics; 2010 Feb; 26(3):434-6. PubMed ID: 20124413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative physical localization of maize mir1 gene in Zea mays L. and Coix lacryma-jobi L.
    Han YH; Wang XL; Liu LH; Song YC
    Yi Chuan Xue Bao; 2004 Apr; 31(4):335-9. PubMed ID: 15487499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of three maize bacterial artificial chromosome libraries toward anchoring of the physical map to the genetic map using high-density bacterial artificial chromosome filter hybridization.
    Yim YS; Davis GL; Duru NA; Musket TA; Linton EW; Messing JW; McMullen MD; Soderlund CA; Polacco ML; Gardiner JM; Coe EH
    Plant Physiol; 2002 Dec; 130(4):1686-96. PubMed ID: 12481051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maize map sees geneticists split over choice of direction.
    Dennis C
    Nature; 2003 Jul; 424(6948):476. PubMed ID: 12891318
    [No Abstract]   [Full Text] [Related]  

  • 14. The maize gene space is compositionally compartimentalized.
    Carels N
    FEBS Lett; 2005 Jul; 579(18):3867-71. PubMed ID: 15996663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and fine mapping of rhm1 locus for resistance to Southern corn leaf blight in maize.
    Zhao Y; Lu X; Liu C; Guan H; Zhang M; Li Z; Cai H; Lai J
    J Integr Plant Biol; 2012 May; 54(5):321-9. PubMed ID: 22348228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New in silico insight into the synteny between rice (Oryza sativa L.) and maize (Zea mays L.) highlights reshuffling and identifies new duplications in the rice genome.
    Salse J; Piégu B; Cooke R; Delseny M
    Plant J; 2004 May; 38(3):396-409. PubMed ID: 15086801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic affinities revealed by GISH suggests intergenomic restructuring between parental genomes of the paleopolyploid genus Zea.
    González GE; Poggio L
    Genome; 2015 Oct; 58(10):433-9. PubMed ID: 26506040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequencing the maize genome.
    Martienssen RA; Rabinowicz PD; O'Shaughnessy A; McCombie WR
    Curr Opin Plant Biol; 2004 Apr; 7(2):102-7. PubMed ID: 15003207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. xGDB: open-source computational infrastructure for the integrated evaluation and analysis of genome features.
    Schlueter SD; Wilkerson MD; Dong Q; Brendel V
    Genome Biol; 2006; 7(11):R111. PubMed ID: 17116260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of high-quality recombination maps with low-coverage genomic sequencing for joint linkage analysis in maize.
    Li C; Li Y; Bradbury PJ; Wu X; Shi Y; Song Y; Zhang D; Rodgers-Melnick E; Buckler ES; Zhang Z; Li Y; Wang T
    BMC Biol; 2015 Sep; 13():78. PubMed ID: 26390990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.