BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 16388385)

  • 1. Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol-gel method.
    Pereira MM; Jones JR; Orefice RL; Hench LL
    J Mater Sci Mater Med; 2005 Nov; 16(11):1045-50. PubMed ID: 16388385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process.
    Allo BA; Rizkalla AS; Mequanint K
    Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of macroporous biodegradable poly(L-lactide-co-epsilon-caprolactone) foams and characterization by mercury intrusion porosimetry, image analysis, and impedance spectroscopy.
    Maquet V; Blacher S; Pirard R; Pirard JP; Vyakarnam MN; Jérôme R
    J Biomed Mater Res A; 2003 Aug; 66(2):199-213. PubMed ID: 12888989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sol-gel synthesis of bioactive glass scaffolds for tissue engineering: effect of surfactant type and concentration.
    de Barros Coelho M; Magalhães Pereira M
    J Biomed Mater Res B Appl Biomater; 2005 Nov; 75(2):451-6. PubMed ID: 16047325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primary osteoblast cell response to sol-gel derived bioactive glass foams.
    Valerio P; Guimaráes MH; Pereira MM; Leite MF; Goes AM
    J Mater Sci Mater Med; 2005 Sep; 16(9):851-6. PubMed ID: 16167114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and characterization of sol-gel derived 45S5 Bioglass®-ceramic scaffolds.
    Chen QZ; Thouas GA
    Acta Biomater; 2011 Oct; 7(10):3616-26. PubMed ID: 21689791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, neutralization and blocking procedures of organic/inorganic hybrid scaffolds for bone tissue engineering applications.
    Costa HS; Stancioli EF; Pereira MM; Oréfice RL; Mansur HS
    J Mater Sci Mater Med; 2009 Feb; 20(2):529-35. PubMed ID: 18807151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxyapatite formation on sol-gel derived poly(ε-caprolactone)/bioactive glass hybrid biomaterials.
    Allo BA; Rizkalla AS; Mequanint K
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3148-56. PubMed ID: 22625179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable and adjustable sol-gel glass based hybrid scaffolds from multi-armed oligomeric building blocks.
    Kascholke C; Hendrikx S; Flath T; Kuzmenka D; Dörfler HM; Schumann D; Gressenbuch M; Schulze FP; Schulz-Siegmund M; Hacker MC
    Acta Biomater; 2017 Nov; 63():336-349. PubMed ID: 28927930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of chitosan-polyvinyl alcohol-bioactive glass hybrid membranes.
    Dias LL; Mansur HS; Donnici CL; Pereira MM
    Biomatter; 2011; 1(1):114-9. PubMed ID: 23507733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors affecting the structure and properties of bioactive foam scaffolds for tissue engineering.
    Jones JR; Hench LL
    J Biomed Mater Res B Appl Biomater; 2004 Jan; 68(1):36-44. PubMed ID: 14689494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst.
    Faure J; Drevet R; Lemelle A; Ben Jaber N; Tara A; El Btaouri H; Benhayoune H
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():407-12. PubMed ID: 25492213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical and cytocompatibility properties of bioactive glass-polyvinyl alcohol-sodium alginate biocomposite foams prepared via sol-gel processing for trabecular bone regeneration.
    Mishra R; Basu B; Kumar A
    J Mater Sci Mater Med; 2009 Dec; 20(12):2493-500. PubMed ID: 19588233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimising bioactive glass scaffolds for bone tissue engineering.
    Jones JR; Ehrenfried LM; Hench LL
    Biomaterials; 2006 Mar; 27(7):964-73. PubMed ID: 16102812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of glass scaffolds macroporosity on the bioactive process.
    Lacroix J; Jallot E; Nedelec JM; Lao J
    J Phys Chem B; 2013 Jan; 117(2):510-7. PubMed ID: 23237305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robotic deposition and in vitro characterization of 3D gelatin-bioactive glass hybrid scaffolds for biomedical applications.
    Gao C; Rahaman MN; Gao Q; Teramoto A; Abe K
    J Biomed Mater Res A; 2013 Jul; 101(7):2027-37. PubMed ID: 23255226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combined effect of freeze--thaw cycles and polymer concentration on the structure and mechanical properties of transparent PVA gels.
    Gupta S; Goswami S; Sinha A
    Biomed Mater; 2012 Feb; 7(1):015006. PubMed ID: 22287550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering.
    Kanimozhi K; Khaleel Basha S; Sugantha Kumari V
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():484-91. PubMed ID: 26838875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering.
    Luo Y; Wu C; Lode A; Gelinsky M
    Biofabrication; 2013 Mar; 5(1):015005. PubMed ID: 23228963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.