These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 16388385)
1. Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol-gel method. Pereira MM; Jones JR; Orefice RL; Hench LL J Mater Sci Mater Med; 2005 Nov; 16(11):1045-50. PubMed ID: 16388385 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process. Allo BA; Rizkalla AS; Mequanint K Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002 [TBL] [Abstract][Full Text] [Related]
3. Preparation of macroporous biodegradable poly(L-lactide-co-epsilon-caprolactone) foams and characterization by mercury intrusion porosimetry, image analysis, and impedance spectroscopy. Maquet V; Blacher S; Pirard R; Pirard JP; Vyakarnam MN; Jérôme R J Biomed Mater Res A; 2003 Aug; 66(2):199-213. PubMed ID: 12888989 [TBL] [Abstract][Full Text] [Related]
4. Sol-gel synthesis of bioactive glass scaffolds for tissue engineering: effect of surfactant type and concentration. de Barros Coelho M; Magalhães Pereira M J Biomed Mater Res B Appl Biomater; 2005 Nov; 75(2):451-6. PubMed ID: 16047325 [TBL] [Abstract][Full Text] [Related]
5. Primary osteoblast cell response to sol-gel derived bioactive glass foams. Valerio P; Guimaráes MH; Pereira MM; Leite MF; Goes AM J Mater Sci Mater Med; 2005 Sep; 16(9):851-6. PubMed ID: 16167114 [TBL] [Abstract][Full Text] [Related]
6. Fabrication and characterization of sol-gel derived 45S5 Bioglass®-ceramic scaffolds. Chen QZ; Thouas GA Acta Biomater; 2011 Oct; 7(10):3616-26. PubMed ID: 21689791 [TBL] [Abstract][Full Text] [Related]
7. Synthesis, neutralization and blocking procedures of organic/inorganic hybrid scaffolds for bone tissue engineering applications. Costa HS; Stancioli EF; Pereira MM; Oréfice RL; Mansur HS J Mater Sci Mater Med; 2009 Feb; 20(2):529-35. PubMed ID: 18807151 [TBL] [Abstract][Full Text] [Related]
8. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties. Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560 [TBL] [Abstract][Full Text] [Related]
9. Hydroxyapatite formation on sol-gel derived poly(ε-caprolactone)/bioactive glass hybrid biomaterials. Allo BA; Rizkalla AS; Mequanint K ACS Appl Mater Interfaces; 2012 Jun; 4(6):3148-56. PubMed ID: 22625179 [TBL] [Abstract][Full Text] [Related]
10. Biodegradable and adjustable sol-gel glass based hybrid scaffolds from multi-armed oligomeric building blocks. Kascholke C; Hendrikx S; Flath T; Kuzmenka D; Dörfler HM; Schumann D; Gressenbuch M; Schulze FP; Schulz-Siegmund M; Hacker MC Acta Biomater; 2017 Nov; 63():336-349. PubMed ID: 28927930 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and characterization of chitosan-polyvinyl alcohol-bioactive glass hybrid membranes. Dias LL; Mansur HS; Donnici CL; Pereira MM Biomatter; 2011; 1(1):114-9. PubMed ID: 23507733 [TBL] [Abstract][Full Text] [Related]
12. Factors affecting the structure and properties of bioactive foam scaffolds for tissue engineering. Jones JR; Hench LL J Biomed Mater Res B Appl Biomater; 2004 Jan; 68(1):36-44. PubMed ID: 14689494 [TBL] [Abstract][Full Text] [Related]
13. A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst. Faure J; Drevet R; Lemelle A; Ben Jaber N; Tara A; El Btaouri H; Benhayoune H Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():407-12. PubMed ID: 25492213 [TBL] [Abstract][Full Text] [Related]
14. Physical and cytocompatibility properties of bioactive glass-polyvinyl alcohol-sodium alginate biocomposite foams prepared via sol-gel processing for trabecular bone regeneration. Mishra R; Basu B; Kumar A J Mater Sci Mater Med; 2009 Dec; 20(12):2493-500. PubMed ID: 19588233 [TBL] [Abstract][Full Text] [Related]
15. Optimising bioactive glass scaffolds for bone tissue engineering. Jones JR; Ehrenfried LM; Hench LL Biomaterials; 2006 Mar; 27(7):964-73. PubMed ID: 16102812 [TBL] [Abstract][Full Text] [Related]
17. Robotic deposition and in vitro characterization of 3D gelatin-bioactive glass hybrid scaffolds for biomedical applications. Gao C; Rahaman MN; Gao Q; Teramoto A; Abe K J Biomed Mater Res A; 2013 Jul; 101(7):2027-37. PubMed ID: 23255226 [TBL] [Abstract][Full Text] [Related]
18. A combined effect of freeze--thaw cycles and polymer concentration on the structure and mechanical properties of transparent PVA gels. Gupta S; Goswami S; Sinha A Biomed Mater; 2012 Feb; 7(1):015006. PubMed ID: 22287550 [TBL] [Abstract][Full Text] [Related]
19. Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering. Kanimozhi K; Khaleel Basha S; Sugantha Kumari V Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():484-91. PubMed ID: 26838875 [TBL] [Abstract][Full Text] [Related]
20. Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering. Luo Y; Wu C; Lode A; Gelinsky M Biofabrication; 2013 Mar; 5(1):015005. PubMed ID: 23228963 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]