BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 16388402)

  • 1. Responses to nickel in the proteome of the hyperaccumulator plant Alyssum lesbiacum.
    Ingle RA; Smith JA; Sweetlove LJ
    Biometals; 2005 Dec; 18(6):627-41. PubMed ID: 16388402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants.
    Ingle RA; Mugford ST; Rees JD; Campbell MM; Smith JA
    Plant Cell; 2005 Jul; 17(7):2089-106. PubMed ID: 15923352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for nickel/proton antiport activity at the tonoplast of the hyperaccumulator plant Alyssum lesbiacum.
    Ingle RA; Fricker MD; Smith JA
    Plant Biol (Stuttg); 2008 Nov; 10(6):746-53. PubMed ID: 18950432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperaccumulation of nickel by hairy roots of alyssum species: comparison with whole regenerated plants.
    Nedelkoska TV; Doran PM
    Biotechnol Prog; 2001; 17(4):752-9. PubMed ID: 11485439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Root-to-shoot long-distance circulation of nicotianamine and nicotianamine-nickel chelates in the metal hyperaccumulator Thlaspi caerulescens.
    Mari S; Gendre D; Pianelli K; Ouerdane L; Lobinski R; Briat JF; Lebrun M; Czernic P
    J Exp Bot; 2006; 57(15):4111-22. PubMed ID: 17079698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intra-specific variation in Ni tolerance, accumulation and translocation patterns in the Ni-hyperaccumulator Alyssum lesbiacum.
    Adamidis GC; Aloupi M; Kazakou E; Dimitrakopoulos PG
    Chemosphere; 2014 Jan; 95():496-502. PubMed ID: 24182400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of nickel bio-ore from hyperaccumulator plant biomass: applications in phytomining.
    Boominathan R; Saha-Chaudhury NM; Sahajwalla V; Doran PM
    Biotechnol Bioeng; 2004 May; 86(3):243-50. PubMed ID: 15083504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafics of Iran.
    Ghaderian SM; Mohtadi A; Rahiminejad MR; Baker AJ
    Environ Pollut; 2007 Jan; 145(1):293-8. PubMed ID: 16781032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza.
    Tada Y; Kashimura T
    Plant Cell Physiol; 2009 Mar; 50(3):439-46. PubMed ID: 19131358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhizosphere microbial densities and trace metal tolerance of the nickel hyperaccumulator Alyssum serpyllifolium subsp. lusitanicum.
    Becerra-Castro C; Monterroso C; García-Lestón M; Prieto-Fernández A; Acea MJ; Kidd PS
    Int J Phytoremediation; 2009 Aug; 11(6):525-41. PubMed ID: 19810353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation of mixed-contaminated soil using the hyperaccumulator plant Alyssum lesbiacum: evidence of histidine as a measure of phytoextractable nickel.
    Singer AC; Bell T; Heywood CA; Smith JA; Thompson IP
    Environ Pollut; 2007 May; 147(1):74-82. PubMed ID: 17084494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea.
    Kerkeb L; Krämer U
    Plant Physiol; 2003 Feb; 131(2):716-24. PubMed ID: 12586895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants.
    Deng TH; Cloquet C; Tang YT; Sterckeman T; Echevarria G; Estrade N; Morel JL; Qiu RL
    Environ Sci Technol; 2014 Oct; 48(20):11926-33. PubMed ID: 25222693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+.
    Roth U; von Roepenack-Lahaye E; Clemens S
    J Exp Bot; 2006; 57(15):4003-13. PubMed ID: 17075075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species.
    Boominathan R; Doran PM
    J Biotechnol; 2003 Mar; 101(2):131-46. PubMed ID: 12568742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative proteome analyses of maize (Zea mays L.) primary roots prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutant rum1.
    Liu Y; Lamkemeyer T; Jakob A; Mi G; Zhang F; Nordheim A; Hochholdinger F
    Proteomics; 2006 Aug; 6(15):4300-8. PubMed ID: 16819721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecophysiology of nickel phytoaccumulation: a simplified biophysical approach.
    Coinchelin D; Bartoli F; Robin C; Echevarria G
    J Exp Bot; 2012 Oct; 63(16):5815-27. PubMed ID: 22987839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interference of nickel with copper and iron homeostasis contributes to metal toxicity symptoms in the nickel hyperaccumulator plant Alyssum inflatum.
    Ghasemi R; Ghaderian SM; Krämer U
    New Phytol; 2009 Nov; 184(3):566-580. PubMed ID: 19691676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Heterogeneity of epidermal cells in relation to nickel accumulation in Alyssum hyperaccumulators].
    Baklanov IA
    Tsitologiia; 2011; 53(7):572-9. PubMed ID: 21938929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean.
    Zhen Y; Qi JL; Wang SS; Su J; Xu GH; Zhang MS; Miao L; Peng XX; Tian D; Yang YH
    Physiol Plant; 2007 Dec; 131(4):542-54. PubMed ID: 18251846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.