These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 16388408)
1. Transport kinetics of iron chelators and their chelates in Caco-2 cells. Huang XP; Spino M; Thiessen JJ Pharm Res; 2006 Feb; 23(2):280-90. PubMed ID: 16388408 [TBL] [Abstract][Full Text] [Related]
2. Transport of iron chelators and chelates across MDCK cell monolayers: implications for iron excretion during chelation therapy. Huang XP; Thiessen JJ; Spino M; Templeton DM Int J Hematol; 2010 Apr; 91(3):401-12. PubMed ID: 20213118 [TBL] [Abstract][Full Text] [Related]
3. Prodrug approach for alphaIIbbeta3-peptidomimetic antagonists to enhance their transport in monolayers of a human intestinal cell line (Caco-2): comparison of in vitro and in vivo data. Kamm W; Raddatz P; Gante J; Kissel T Pharm Res; 1999 Oct; 16(10):1527-33. PubMed ID: 10554093 [TBL] [Abstract][Full Text] [Related]
4. Mechanisms of transport and structure-permeability relationship of sulfasalazine and its analogs in Caco-2 cell monolayers. Liang E; Proudfoot J; Yazdanian M Pharm Res; 2000 Oct; 17(10):1168-74. PubMed ID: 11145220 [TBL] [Abstract][Full Text] [Related]
5. Transepithelial transport of fluorescein in Caco-2 cell monolayers and use of such transport in in vitro evaluation of phenolic acid availability. Konishi Y; Hagiwara K; Shimizu M Biosci Biotechnol Biochem; 2002 Nov; 66(11):2449-57. PubMed ID: 12506986 [TBL] [Abstract][Full Text] [Related]
6. Transport of hop bitter acids across intestinal Caco-2 cell monolayers. Cattoor K; Bracke M; Deforce D; De Keukeleire D; Heyerick A J Agric Food Chem; 2010 Apr; 58(7):4132-40. PubMed ID: 20329731 [TBL] [Abstract][Full Text] [Related]
7. [Absorption of papaverine, laudanosine and cepharanthine across human intestine by using human Caco-2 cells monolayers model]. Ma L; Yang XW Yao Xue Xue Bao; 2008 Feb; 43(2):202-7. PubMed ID: 18507350 [TBL] [Abstract][Full Text] [Related]
8. Vesicular transport and apotransferrin in intestinal iron absorption, as shown in the Caco-2 cell model. Moriya M; Linder MC Am J Physiol Gastrointest Liver Physiol; 2006 Feb; 290(2):G301-9. PubMed ID: 16179601 [TBL] [Abstract][Full Text] [Related]
9. The transport of two iron chelators, desferrioxamine B and L1, across Caco-2 monolayers. Hamilton KO; Stallibrass L; Hassan I; Jin Y; Halleux C; Mackay M Br J Haematol; 1994 Apr; 86(4):851-7. PubMed ID: 7918082 [TBL] [Abstract][Full Text] [Related]
10. Caco-2 cell permeability of a new (hydroxybenzyl)ethylenediamine oral iron chelator: correlation with physicochemical properties and oral activity. Lowther N; Tomlinson B; Fox R; Faller B; Sergejew T; Donnelly H J Pharm Sci; 1998 Sep; 87(9):1041-5. PubMed ID: 9724552 [TBL] [Abstract][Full Text] [Related]
11. Intestinal permeability of antivirus constituents from the fruits of Eucalyptus globulus Labill. in Caco-2 Cell Model. Yang XW; Guo QM; Wang Y; Xu W; Tian L; Tian XJ Bioorg Med Chem Lett; 2007 Feb; 17(4):1107-11. PubMed ID: 17118653 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of creatine transport using Caco-2 monolayers as an in vitro model for intestinal absorption. Dash AK; Miller DW; Huai-Yan H; Carnazzo J; Stout JR J Pharm Sci; 2001 Oct; 90(10):1593-8. PubMed ID: 11745717 [TBL] [Abstract][Full Text] [Related]
13. [Absorption of coptisine chloride and berberrubine across human intestinal epithelial by using human Caco-2 cell monolayers]. Ma L; Yang XW Zhongguo Zhong Yao Za Zhi; 2007 Dec; 32(23):2523-7. PubMed ID: 18330249 [TBL] [Abstract][Full Text] [Related]
14. Usefulness of a novel Caco-2 cell perfusion system. I. In vitro prediction of the absorption potential of passively diffused compounds. Masungi C; Borremans C; Willems B; Mensch J; Van Dijck A; Augustijns P; Brewster ME; Noppe M J Pharm Sci; 2004 Oct; 93(10):2507-21. PubMed ID: 15349960 [TBL] [Abstract][Full Text] [Related]
15. Transport of parthenolide across human intestinal cells (Caco-2). Khan SI; Abourashed EA; Khan IA; Walker LA Planta Med; 2003 Nov; 69(11):1009-12. PubMed ID: 14735438 [TBL] [Abstract][Full Text] [Related]
16. Permeability profiles of M-alkoxysubstituted pyrrolidinoethylesters of phenylcarbamic acid across caco-2 monolayers and human skin. Gyürösiová L; Laitinen L; Raiman J; Cizmárik J; Sedlárová E; Hirvonen J Pharm Res; 2002 Feb; 19(2):162-8. PubMed ID: 11883643 [TBL] [Abstract][Full Text] [Related]
17. Transport of curcumin derivatives in Caco-2 cell monolayers. Zeng Z; Shen ZL; Zhai S; Xu JL; Liang H; Shen Q; Li QY Eur J Pharm Biopharm; 2017 Aug; 117():123-131. PubMed ID: 28396278 [TBL] [Abstract][Full Text] [Related]
18. Transport of a hydrophilic paclitaxel derivative, 7-xylosyl-10-deacetylpaclitaxel, by human intestinal epithelial Caco-2 cells. Jiang S; Zu Y; Zhang Y; Fu Y; Wang Z; Wang J Planta Med; 2010 Oct; 76(14):1592-5. PubMed ID: 20414861 [TBL] [Abstract][Full Text] [Related]
19. Intestinal absorption screening of mixtures from combinatorial libraries in the Caco-2 model. Taylor EW; Gibbons JA; Braeckman RA Pharm Res; 1997 May; 14(5):572-7. PubMed ID: 9165526 [TBL] [Abstract][Full Text] [Related]