These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 16388444)
1. Effects of training on lactate kinetics parameters and their influence on short high-intensity exercise performance. Messonnier L; Freund H; Denis C; Féasson L; Lacour JR Int J Sports Med; 2006 Jan; 27(1):60-6. PubMed ID: 16388444 [TBL] [Abstract][Full Text] [Related]
2. Effect of endurance training on blood lactate clearance after maximal exercise. Fukuba Y; Walsh ML; Morton RH; Cameron BJ; Kenny CT; Banister EW J Sports Sci; 1999 Mar; 17(3):239-48. PubMed ID: 10362391 [TBL] [Abstract][Full Text] [Related]
3. Are the effects of training on fat metabolism involved in the improvement of performance during high-intensity exercise? Messonnier L; Denis C; Prieur F; Lacour JR Eur J Appl Physiol; 2005 Jul; 94(4):434-41. PubMed ID: 15843960 [TBL] [Abstract][Full Text] [Related]
4. Time to exhaustion at VO(2)max is related to the lactate exchange and removal abilities. Messonnier L; Freund H; Denis C; Dormois D; Dufour AB; Lacour JR Int J Sports Med; 2002 Aug; 23(6):433-8. PubMed ID: 12215963 [TBL] [Abstract][Full Text] [Related]
5. High content of MYHC II in vastus lateralis is accompanied by higher VO2/power output ratio during moderate intensity cycling performed both at low and at high pedalling rates. Majerczak J; Szkutnik Z; Karasinski J; Duda K; Kolodziejski L; Zoladz JA J Physiol Pharmacol; 2006 Jun; 57(2):199-215. PubMed ID: 16845226 [TBL] [Abstract][Full Text] [Related]
6. Effect of combined active recovery from supramaximal exercise on blood lactate disappearance in trained and untrained man. Gmada N; Bouhlel E; Mrizak I; Debabi H; Ben Jabrallah M; Tabka Z; Feki Y; Amri M Int J Sports Med; 2005 Dec; 26(10):874-9. PubMed ID: 16320173 [TBL] [Abstract][Full Text] [Related]
7. The effects of work-rest duration on intermittent exercise and subsequent performance. Price M; Halabi K J Sports Sci; 2005 Aug; 23(8):835-42. PubMed ID: 16195035 [TBL] [Abstract][Full Text] [Related]
8. Neural, metabolic, and performance adaptations to four weeks of high intensity sprint-interval training in trained cyclists. Creer AR; Ricard MD; Conlee RK; Hoyt GL; Parcell AC Int J Sports Med; 2004 Feb; 25(2):92-8. PubMed ID: 14986190 [TBL] [Abstract][Full Text] [Related]
9. Effects of training in normoxia and normobaric hypoxia on time to exhaustion at the maximum rate of oxygen uptake. Messonnier L; Geyssant A; Hintzy F; Lacour JR Eur J Appl Physiol; 2004 Aug; 92(4-5):470-6. PubMed ID: 15138836 [TBL] [Abstract][Full Text] [Related]
10. MyHC II content in the vastus lateralis m. quadricipitis femoris is positively correlated with the magnitude of the non-linear increase in the VO2 / power output relationship in humans. Zoladz JA; Duda K; Karasinski J; Majerczak J; Kolodziejski L; Korzeniewski B J Physiol Pharmacol; 2002 Dec; 53(4 Pt 2):805-21. PubMed ID: 12510865 [TBL] [Abstract][Full Text] [Related]
11. Blood lactate exchange and removal abilities after relative high-intensity exercise: effects of training in normoxia and hypoxia. Messonnier L; Freund H; Féasson L; Prieur F; Castells J; Denis C; Linossier MT; Geyssant A; Lacour JR Eur J Appl Physiol; 2001 May; 84(5):403-12. PubMed ID: 11417427 [TBL] [Abstract][Full Text] [Related]
12. Effects of high-intensity isokinetic exercise on salivary cortisol in athletes with different training schedules: relationships to serum cortisol and lactate. Paccotti P; Minetto M; Terzolo M; Ventura M; Ganzit GP; Borrione P; Termine A; Angeli A Int J Sports Med; 2005 Nov; 26(9):747-55. PubMed ID: 16237620 [TBL] [Abstract][Full Text] [Related]
13. Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. Juel C; Klarskov C; Nielsen JJ; Krustrup P; Mohr M; Bangsbo J Am J Physiol Endocrinol Metab; 2004 Feb; 286(2):E245-51. PubMed ID: 14559724 [TBL] [Abstract][Full Text] [Related]
14. The effects of prior cycling and a successive run on respiratory muscle performance in triathletes. Boussana A; Galy O; Hue O; Matecki S; Varray A; Ramonatxo M; Le Gallais D Int J Sports Med; 2003 Jan; 24(1):63-70. PubMed ID: 12582954 [TBL] [Abstract][Full Text] [Related]
15. Impressive anaerobic adaptations in elite karate athletes due to few intensive intermittent sessions added to regular karate training. Ravier G; Dugué B; Grappe F; Rouillon JD Scand J Med Sci Sports; 2009 Oct; 19(5):687-94. PubMed ID: 18694436 [TBL] [Abstract][Full Text] [Related]
16. Effectiveness of low-intensity endurance training. Meyer T; Auracher M; Heeg K; Urhausen A; Kindermann W Int J Sports Med; 2007 Jan; 28(1):33-9. PubMed ID: 17213964 [TBL] [Abstract][Full Text] [Related]
17. Effect of exercise-induced dehydration on lactate parameters during incremental exercise. Van Schuylenbergh R; Vanden Eynde B; Hespel P Int J Sports Med; 2005 Dec; 26(10):854-8. PubMed ID: 16320170 [TBL] [Abstract][Full Text] [Related]
18. Effect of training in humans on off- and on-transient oxygen uptake kinetics after severe exhausting intensity runs. Billat VL; Mille-Hamard L; Demarle A; Koralsztein JP Eur J Appl Physiol; 2002 Oct; 87(6):496-505. PubMed ID: 12355188 [TBL] [Abstract][Full Text] [Related]
19. Effect of endurance training on muscle TCA cycle metabolism during exercise in humans. Howarth KR; LeBlanc PJ; Heigenhauser GJ; Gibala MJ J Appl Physiol (1985); 2004 Aug; 97(2):579-84. PubMed ID: 15121741 [TBL] [Abstract][Full Text] [Related]