These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1050 related articles for article (PubMed ID: 16388474)
1. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Khalvati MA; Hu Y; Mozafar A; Schmidhalter U Plant Biol (Stuttg); 2005 Nov; 7(6):706-12. PubMed ID: 16388474 [TBL] [Abstract][Full Text] [Related]
2. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. Porcel R; Ruiz-Lozano JM J Exp Bot; 2004 Aug; 55(403):1743-50. PubMed ID: 15208335 [TBL] [Abstract][Full Text] [Related]
3. Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Querejeta JI; Egerton-Warburton LM; Allen MF Oecologia; 2003 Jan; 134(1):55-64. PubMed ID: 12647179 [TBL] [Abstract][Full Text] [Related]
4. Uptake and transfer of nutrients in ectomycorrhizal associations: interactions between photosynthesis and phosphate nutrition. Bücking H; Heyser W Mycorrhiza; 2003 Apr; 13(2):59-68. PubMed ID: 12682827 [TBL] [Abstract][Full Text] [Related]
5. Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil. Zhu YG; Smith FA; Smith SE Mycorrhiza; 2003 Apr; 13(2):93-100. PubMed ID: 12682831 [TBL] [Abstract][Full Text] [Related]
6. Relating foliar dehydration tolerance of mycorrhizal Phaseolus vulgaris to soil and root colonization by hyphae. Augé RM; Moore JL; Cho K; Stutz JC; Sylvia DM; al-Agely AK; Saxton AM J Plant Physiol; 2003 Oct; 160(10):1147-56. PubMed ID: 14610883 [TBL] [Abstract][Full Text] [Related]
7. Impact of temperature on the arbuscular mycorrhizal (AM) symbiosis: growth responses of the host plant and its AM fungal partner. Heinemeyer A; Fitter AH J Exp Bot; 2004 Feb; 55(396):525-34. PubMed ID: 14739273 [TBL] [Abstract][Full Text] [Related]
8. Influence of arbuscular mycorrhizae on the root system of maize plants under salt stress. Sheng M; Tang M; Chen H; Yang B; Zhang F; Huang Y Can J Microbiol; 2009 Jul; 55(7):879-86. PubMed ID: 19767861 [TBL] [Abstract][Full Text] [Related]
9. Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua L. Rapparini F; Llusià J; Peñuelas J Plant Biol (Stuttg); 2008 Jan; 10(1):108-22. PubMed ID: 18211551 [TBL] [Abstract][Full Text] [Related]
10. Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Staddon PL; Ramsey CB; Ostle N; Ineson P; Fitter AH Science; 2003 May; 300(5622):1138-40. PubMed ID: 12750519 [TBL] [Abstract][Full Text] [Related]
11. Water flows in the parasitic association Rhinanthus minor/Hordeum vulgare. Jiang F; Jeschke WD; Hartung W J Exp Bot; 2003 Aug; 54(389):1985-93. PubMed ID: 12869524 [TBL] [Abstract][Full Text] [Related]
12. Strobilurin fungicides induce changes in photosynthetic gas exchange that do not improve water use efficiency of plants grown under conditions of water stress. Nason MA; Farrar J; Bartlett D Pest Manag Sci; 2007 Dec; 63(12):1191-200. PubMed ID: 17912684 [TBL] [Abstract][Full Text] [Related]
13. Arbuscular mycorrhizal fungi can decrease the uptake of uranium by subterranean clover grown at high levels of uranium in soil. Rufyikiri G; Huysmans L; Wannijn J; Van Hees M; Leyval C; Jakobsen I Environ Pollut; 2004 Aug; 130(3):427-36. PubMed ID: 15182973 [TBL] [Abstract][Full Text] [Related]
14. Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza. de Andrade SA; da Silveira AP; Jorge RA; de Abreu MF Int J Phytoremediation; 2008; 10(1):1-13. PubMed ID: 18709928 [TBL] [Abstract][Full Text] [Related]
15. Monoxenic in vitro production and colonization potential of AM fungus Glomus intraradices. Mohamma A; Khan AG Indian J Exp Biol; 2002 Sep; 40(9):1087-91. PubMed ID: 12587745 [TBL] [Abstract][Full Text] [Related]
16. Seasonal evolution of diffusional limitations and photosynthetic capacity in olive under drought. Diaz-Espejo A; Nicolás E; Fernández JE Plant Cell Environ; 2007 Aug; 30(8):922-33. PubMed ID: 17617820 [TBL] [Abstract][Full Text] [Related]
17. Partial root zone drying: regulation of photosynthetic limitations and antioxidant enzymatic activities in young olive (Olea europaea) saplings. Aganchich B; Wahbi S; Loreto F; Centritto M Tree Physiol; 2009 May; 29(5):685-96. PubMed ID: 19324696 [TBL] [Abstract][Full Text] [Related]
18. Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. Egerton-Warburton LM; Querejeta JI; Allen MF J Exp Bot; 2007; 58(6):1473-83. PubMed ID: 17350936 [TBL] [Abstract][Full Text] [Related]
19. Root-to-shoot signalling when soil moisture is heterogeneous: increasing the proportion of root biomass in drying soil inhibits leaf growth and increases leaf abscisic acid concentration. Martin-Vertedor AI; Dodd IC Plant Cell Environ; 2011 Jul; 34(7):1164-75. PubMed ID: 21410712 [TBL] [Abstract][Full Text] [Related]
20. Short term effects of Glomus claroideum and Azospirillum brasilense on growth and root acid phosphatase activity of Carica papaya L. under phosphorus stress. Alarcón A; Davies FT; Egilla JN; Fox TC; Estrada-Luna AA; Ferrera-Cerrato R Rev Latinoam Microbiol; 2002; 44(1):31-7. PubMed ID: 17061513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]