These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1050 related articles for article (PubMed ID: 16388474)
41. Modelling nutrient uptake by individual hyphae of arbuscular mycorrhizal fungi: temporal and spatial scales for an experimental design. Schnepf A; Jones D; Roose T Bull Math Biol; 2011 Sep; 73(9):2175-200. PubMed ID: 21225357 [TBL] [Abstract][Full Text] [Related]
42. Uptake of cadmium from an experimentally contaminated calcareous soil by arbuscular mycorrhizal maize (Zea mays L.). Chen BD; Liu Y; Shen H; Li XL; Christie P Mycorrhiza; 2004 Dec; 14(6):347-54. PubMed ID: 14661105 [TBL] [Abstract][Full Text] [Related]
43. Relative importance of an arbuscular mycorrhizal fungus (Rhizophagus intraradices) and root hairs in plant drought tolerance. Li T; Lin G; Zhang X; Chen Y; Zhang S; Chen B Mycorrhiza; 2014 Nov; 24(8):595-602. PubMed ID: 24743902 [TBL] [Abstract][Full Text] [Related]
44. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chen X; Wu C; Tang J; Hu S Chemosphere; 2005 Jul; 60(5):665-71. PubMed ID: 15963805 [TBL] [Abstract][Full Text] [Related]
45. Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays L. Frey B; Schüepp H New Phytol; 1993 Jun; 124(2):221-230. PubMed ID: 33874357 [TBL] [Abstract][Full Text] [Related]
46. Physiological responses of potato (Solanum tuberosum L.) to partial root-zone drying: ABA signalling, leaf gas exchange, and water use efficiency. Liu F; Shahnazari A; Andersen MN; Jacobsen SE; Jensen CR J Exp Bot; 2006; 57(14):3727-35. PubMed ID: 16982651 [TBL] [Abstract][Full Text] [Related]
47. Phosphorus, arbuscular mycorrhizal fungi and performance of the wetland plant Lythrum salicaria L. under inundated conditions. Stevens KJ; Spender SW; Peterson RL Mycorrhiza; 2002 Dec; 12(6):277-83. PubMed ID: 12466914 [TBL] [Abstract][Full Text] [Related]
48. Importance of internal hydraulic redistribution for prolonging the lifespan of roots in dry soil. Bauerle TL; Richards JH; Smart DR; Eissenstat DM Plant Cell Environ; 2008 Feb; 31(2):177-86. PubMed ID: 18028280 [TBL] [Abstract][Full Text] [Related]
49. Absence of carbon transfer between Medicago truncatula plants linked by a mycorrhizal network, demonstrated in an experimental microcosm. Voets L; Goubau I; Olsson PA; Merckx R; Declerck S FEMS Microbiol Ecol; 2008 Aug; 65(2):350-60. PubMed ID: 18557940 [TBL] [Abstract][Full Text] [Related]
50. Effects of arbuscular-mycorrhizal glomus species on drought tolerance: physiological and nutritional plant responses. Ruiz-Lozano JM; Azcon R; Gomez M Appl Environ Microbiol; 1995 Feb; 61(2):456-60. PubMed ID: 16534929 [TBL] [Abstract][Full Text] [Related]
51. Growth and Photosynthetic Activity of Selected Spelt Varieties ( Ratajczak K; Sulewska H; Błaszczyk L; Basińska-Barczak A; Mikołajczak K; Salamon S; Szymańska G; Dryjański L Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33121138 [TBL] [Abstract][Full Text] [Related]
52. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Chen B; Xiao X; Zhu YG; Smith FA; Xie ZM; Smith SE Sci Total Environ; 2007 Jul; 379(2-3):226-34. PubMed ID: 17157359 [TBL] [Abstract][Full Text] [Related]
53. Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system. Toussaint JP; St-Arnaud M; Charest C Can J Microbiol; 2004 Apr; 50(4):251-60. PubMed ID: 15213749 [TBL] [Abstract][Full Text] [Related]
54. An indigenous drought-tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Marulanda A; Barea JM; Azcón R Microb Ecol; 2006 Nov; 52(4):670-8. PubMed ID: 17075734 [TBL] [Abstract][Full Text] [Related]
55. Effect of ectomycorrhizal colonization and drought on reactive oxygen species metabolism of Nothofagus dombeyi roots. Alvarez M; Huygens D; Fernandez C; Gacitúa Y; Olivares E; Saavedra I; Alberdi M; Valenzuela E Tree Physiol; 2009 Aug; 29(8):1047-57. PubMed ID: 19483186 [TBL] [Abstract][Full Text] [Related]
57. Role and influence of mycorrhizal fungi on radiocesium accumulation by plants. de Boulois HD; Joner EJ; Leyval C; Jakobsen I; Chen BD; Roos P; Thiry Y; Rufyikiri G; Delvaux B; Declerck S J Environ Radioact; 2008 May; 99(5):785-800. PubMed ID: 18055077 [TBL] [Abstract][Full Text] [Related]
58. Impact of defoliation intensities on plant biomass, nutrient uptake and arbuscular mycorrhizal symbiosis in Lotus tenuis growing in a saline-sodic soil. García I; Mendoza R Plant Biol (Stuttg); 2012 Nov; 14(6):964-71. PubMed ID: 22512871 [TBL] [Abstract][Full Text] [Related]
59. Effects of nursery preconditioning through mycorrhizal inoculation and drought in Arbutus unedo L. plants. Navarro García A; Del Pilar Bañón Árias S; Morte A; Sánchez-Blanco MJ Mycorrhiza; 2011 Jan; 21(1):53-64. PubMed ID: 20405149 [TBL] [Abstract][Full Text] [Related]
60. High turnover of fungal hyphae in incubation experiments. de Vries FT; Bååth E; Kuyper TW; Bloem J FEMS Microbiol Ecol; 2009 Mar; 67(3):389-96. PubMed ID: 19159421 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]