BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 16388612)

  • 1. Cyclohexanyl peptide nucleic acids (chPNAs) for preferential RNA binding: effective tuning of dihedral angle beta in PNAs for DNA/RNA discrimination.
    Govindaraju T; Madhuri V; Kumar VA; Ganesh KN
    J Org Chem; 2006 Jan; 71(1):14-21. PubMed ID: 16388612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA hairpin invasion and ribosome elongation arrest by mixed base PNA oligomer.
    Dias N; Sénamaud-Beaufort C; Forestier El El; Auvin C; Hélène C; Ester Saison-Behmoaras T
    J Mol Biol; 2002 Jul; 320(3):489-501. PubMed ID: 12096905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. (SR/RS)-cyclohexanyl PNAs: conformationally preorganized PNA analogues with unprecedented preference for duplex formation with RNA.
    Govindaraju T; Kumar VA; Ganesh KN
    J Am Chem Soc; 2005 Mar; 127(12):4144-5. PubMed ID: 15783176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformationally constrained PNA analogues: structural evolution toward DNA/RNA binding selectivity.
    Kumar VA; Ganesh KN
    Acc Chem Res; 2005 May; 38(5):404-12. PubMed ID: 15895978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. (1S,2R/1R,2S)-cis-cyclopentyl PNAs (cpPNAs) as constrained PNA analogues: synthesis and evaluation of aeg-cpPNA chimera and stereopreferences in hybridization with DNA/RNA.
    Govindaraju T; Kumar VA; Ganesh KN
    J Org Chem; 2004 Aug; 69(17):5725-34. PubMed ID: 15307746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cyclopentane conformational restraint for a peptide nucleic acid: design, asymmetric synthesis, and improved binding affinity to DNA and RNA.
    Myers MC; Witschi MA; Larionova NV; Franck JM; Haynes RD; Hara T; Grajkowski A; Appella DH
    Org Lett; 2003 Jul; 5(15):2695-8. PubMed ID: 12868892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and evaluation of (1S,2R/1R,2S)-aminocyclohexylglycyl PNAs as conformationally preorganized PNA analogues for DNA/RNA recognition.
    Govindaraju T; Kumar VA; Ganesh KN
    J Org Chem; 2004 Mar; 69(6):1858-65. PubMed ID: 15058930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. (S,S)-trans-cyclopentane-constrained peptide nucleic acids. a general backbone modification that improves binding affinity and sequence specificity.
    Pokorski JK; Witschi MA; Purnell BL; Appella DH
    J Am Chem Soc; 2004 Nov; 126(46):15067-73. PubMed ID: 15548003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cu2+-controlled hybridization of peptide nucleic acids.
    Kovács J; Jentzsch E; Mokhir A
    Inorg Chem; 2008 Dec; 47(24):11965-71. PubMed ID: 19053337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of chirality and optical purity in nucleic acid recognition by PNA and PNA analogs.
    Sforza S; Galaverna G; Dossena A; Corradini R; Marchelli R
    Chirality; 2002 Jul; 14(7):591-8. PubMed ID: 12112334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide nucleic acid-DNA duplexes containing the universal base 3-nitropyrrole.
    Zhang BP; Egholm M; Paul N; Pingle M; Bergstrom DE
    Methods; 2001 Feb; 23(2):132-40. PubMed ID: 11181032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new concept in double duplex DNA invasion by chiral PNAs which simultaneously depress PNA-PNA and improve PNA-DNA duplex stability.
    Sforza S; Tedeschi T; Corradini R; Marchelli R
    Nucleic Acids Symp Ser (Oxf); 2007; (51):19-20. PubMed ID: 18029565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chimeric (aeg-pyrrolidine)PNAs: synthesis and stereo-discriminative duplex binding with DNA/RNA.
    Lonkar PS; Ganesh KN; Kumar VA
    Org Biomol Chem; 2004 Sep; 2(18):2604-11. PubMed ID: 15351824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of helix morphology on co-operative polyamide backbone conformational flexibility in peptide nucleic acid complexes.
    Topham CM; Smith JC
    J Mol Biol; 1999 Oct; 292(5):1017-38. PubMed ID: 10512700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extending recognition by peptide nucleic acids (PNAs): binding to duplex DNA and inhibition of transcription by tail-clamp PNA-peptide conjugates.
    Kaihatsu K; Shah RH; Zhao X; Corey DR
    Biochemistry; 2003 Dec; 42(47):13996-4003. PubMed ID: 14636068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. C3'-endo-puckered pyrrolidine containing PNA has favorable geometry for RNA binding: novel ethano locked PNA (ethano-PNA).
    Banerjee A; Kumar VA
    Bioorg Med Chem; 2013 Jul; 21(14):4092-101. PubMed ID: 23743441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino/guanidino-functionalized N-(pyrrolidin-2-ethyl)glycine-based pet-PNA: design, synthesis and binding with DNA/RNA.
    Gokhale SS; Kumar VA
    Org Biomol Chem; 2010 Aug; 8(16):3742-50. PubMed ID: 20539879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lysine-based peptide nucleic acids (PNAs) with strong chiral constraint: control of helix handedness and DNA binding by chirality.
    Tedeschi T; Sforza S; Dossena A; Corradini R; Marchelli R
    Chirality; 2005; 17 Suppl():S196-204. PubMed ID: 15952136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-affinity homologous peptide nucleic acid probes for targeting a quadruplex-forming sequence from a MYC promoter element.
    Roy S; Tanious FA; Wilson WD; Ly DH; Armitage BA
    Biochemistry; 2007 Sep; 46(37):10433-43. PubMed ID: 17718513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The alpha-helical peptide nucleic acid concept: merger of peptide secondary structure and codified nucleic acid recognition.
    Huang Y; Dey S; Zhang X; Sönnichsen F; Garner P
    J Am Chem Soc; 2004 Apr; 126(14):4626-40. PubMed ID: 15070379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.