These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 16388822)
1. Structural basis for metal binding specificity: the N-terminal cadmium binding domain of the P1-type ATPase CadA. Banci L; Bertini I; Ciofi-Baffoni S; Su XC; Miras R; Bal N; Mintz E; Catty P; Shokes JE; Scott RA J Mol Biol; 2006 Feb; 356(3):638-50. PubMed ID: 16388822 [TBL] [Abstract][Full Text] [Related]
2. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains. Zimmermann M; Clarke O; Gulbis JM; Keizer DW; Jarvis RS; Cobbett CS; Hinds MG; Xiao Z; Wedd AG Biochemistry; 2009 Dec; 48(49):11640-54. PubMed ID: 19883117 [TBL] [Abstract][Full Text] [Related]
3. Cd2+ and the N-terminal metal-binding domain protect the putative membranous CPC motif of the Cd2+-ATPase of Listeria monocytogenes. Bal N; Wu CC; Catty P; Guillain F; Mintz E Biochem J; 2003 Feb; 369(Pt 3):681-5. PubMed ID: 12383056 [TBL] [Abstract][Full Text] [Related]
4. Metal-binding characteristics of the amino-terminal domain of ZntA: binding of lead is different compared to cadmium and zinc. Liu J; Stemmler AJ; Fatima J; Mitra B Biochemistry; 2005 Apr; 44(13):5159-67. PubMed ID: 15794653 [TBL] [Abstract][Full Text] [Related]
5. The cadmium transport sites of CadA, the Cd2+-ATPase from Listeria monocytogenes. Wu CC; Gardarin A; Martel A; Mintz E; Guillain F; Catty P J Biol Chem; 2006 Oct; 281(40):29533-41. PubMed ID: 16835223 [TBL] [Abstract][Full Text] [Related]
6. The cysteine-rich amino-terminal domain of ZntA, a Pb(II)/Zn(II)/Cd(II)-translocating ATPase from Escherichia coli, is not essential for its function. Mitra B; Sharma R Biochemistry; 2001 Jun; 40(25):7694-9. PubMed ID: 11412123 [TBL] [Abstract][Full Text] [Related]
7. Metal binding to the N-terminal cytoplasmic domain of the PIB ATPase HMA4 is required for metal transport in Arabidopsis. Laurent C; Lekeux G; Ukuwela AA; Xiao Z; Charlier JB; Bosman B; Carnol M; Motte P; Damblon C; Galleni M; Hanikenne M Plant Mol Biol; 2016 Mar; 90(4-5):453-66. PubMed ID: 26797794 [TBL] [Abstract][Full Text] [Related]
8. Metal Selectivity of a Cd-, Co-, and Zn-Transporting P Smith AT; Ross MO; Hoffman BM; Rosenzweig AC Biochemistry; 2017 Jan; 56(1):85-95. PubMed ID: 28001366 [TBL] [Abstract][Full Text] [Related]
9. A new zinc-protein coordination site in intracellular metal trafficking: solution structure of the Apo and Zn(II) forms of ZntA(46-118). Banci L; Bertini I; Ciofi-Baffoni S; Finney LA; Outten CE; O'Halloran TV J Mol Biol; 2002 Nov; 323(5):883-97. PubMed ID: 12417201 [TBL] [Abstract][Full Text] [Related]
10. The structure and function of heavy metal transport P1B-ATPases. Argüello JM; Eren E; González-Guerrero M Biometals; 2007 Jun; 20(3-4):233-48. PubMed ID: 17219055 [TBL] [Abstract][Full Text] [Related]
11. Novel Zn2+ coordination by the regulatory N-terminus metal binding domain of Arabidopsis thaliana Zn(2+)-ATPase HMA2. Eren E; González-Guerrero M; Kaufman BM; Argüello JM Biochemistry; 2007 Jul; 46(26):7754-64. PubMed ID: 17550234 [TBL] [Abstract][Full Text] [Related]
12. A new metal binding domain involved in cadmium, cobalt and zinc transport. Smith AT; Barupala D; Stemmler TL; Rosenzweig AC Nat Chem Biol; 2015 Sep; 11(9):678-84. PubMed ID: 26192600 [TBL] [Abstract][Full Text] [Related]
13. Functional analysis of chimeric proteins of the Wilson Cu(I)-ATPase (ATP7B) and ZntA, a Pb(II)/Zn(II)/Cd(II)-ATPase from Escherichia coli. Hou ZJ; Narindrasorasak S; Bhushan B; Sarkar B; Mitra B J Biol Chem; 2001 Nov; 276(44):40858-63. PubMed ID: 11527979 [TBL] [Abstract][Full Text] [Related]
14. CadA of Mesorhizobium metallidurans isolated from a zinc-rich mining soil is a P(IB-2)-type ATPase involved in cadmium and zinc resistance. Maynaud G; Brunel B; Yashiro E; Mergeay M; Cleyet-Marel JC; Le Quéré A Res Microbiol; 2014 Apr; 165(3):175-89. PubMed ID: 24607711 [TBL] [Abstract][Full Text] [Related]
15. Conservative and nonconservative mutations of the transmembrane CPC motif in ZntA: effect on metal selectivity and activity. Dutta SJ; Liu J; Stemmler AJ; Mitra B Biochemistry; 2007 Mar; 46(12):3692-703. PubMed ID: 17326661 [TBL] [Abstract][Full Text] [Related]
16. NMR structural analysis of the soluble domain of ZiaA-ATPase and the basis of selective interactions with copper metallochaperone Atx1. Banci L; Bertini I; Ciofi-Baffoni S; Poggi L; Vanarotti M; Tottey S; Waldron KJ; Robinson NJ J Biol Inorg Chem; 2010 Jan; 15(1):87-98. PubMed ID: 19609573 [TBL] [Abstract][Full Text] [Related]
17. A tetrahedral coordination of Zinc during transmembrane transport by P-type Zn(2+)-ATPases. Raimunda D; Subramanian P; Stemmler T; Argüello JM Biochim Biophys Acta; 2012 May; 1818(5):1374-7. PubMed ID: 22387457 [TBL] [Abstract][Full Text] [Related]
18. CadA, the Cd2+-ATPase from Listeria monocytogenes, can use Cd2+ as co-substrate. Wu CC; Gardarin A; Catty P; Guillain F; Mintz E Biochimie; 2006 Nov; 88(11):1687-92. PubMed ID: 16889884 [TBL] [Abstract][Full Text] [Related]
19. Human Menkes X-chromosome disease and the staphylococcal cadmium-resistance ATPase: a remarkable similarity in protein sequences. Silver S; Nucifora G; Phung LT Mol Microbiol; 1993 Oct; 10(1):7-12. PubMed ID: 7968520 [TBL] [Abstract][Full Text] [Related]
20. Membrane structure of CtrA3, a copper-transporting P-type-ATPase from Aquifex aeolicus. Chintalapati S; Al Kurdi R; van Scheltinga AC; Kühlbrandt W J Mol Biol; 2008 May; 378(3):581-95. PubMed ID: 18374940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]